The Hartley-type (Ht) algebras are used to face efficiently the solution of structured linear systems and to define low complexity methods for solving general (non structured) nonlinear problems. Displacement formulas for the inverse of a symmetric Toeplitz matrix in terms of Ht transforms are compared with the well known Ammar-Gader formula. The LQN unconstrained optimization methods, which define Hessian approximations by updating nxn matrices from an algebra L, can be implemented for L=Ht with an O(n) amount of memory allocations and O(nlog_2 n) arithmetic operations per step. The LQN methods with the lowest experimental rate of convergence are shown to be linearly convergent.

DI FIORE, C., Lepore, F., Zellini, P. (2003). Hartley-type algebras in displacement and optimization strategies. LINEAR ALGEBRA AND ITS APPLICATIONS, 366, 215-232 [10.1016/S0024-3795(02)00499-8].

Hartley-type algebras in displacement and optimization strategies

DI FIORE, CARMINE;ZELLINI, PAOLO
2003-01-01

Abstract

The Hartley-type (Ht) algebras are used to face efficiently the solution of structured linear systems and to define low complexity methods for solving general (non structured) nonlinear problems. Displacement formulas for the inverse of a symmetric Toeplitz matrix in terms of Ht transforms are compared with the well known Ammar-Gader formula. The LQN unconstrained optimization methods, which define Hessian approximations by updating nxn matrices from an algebra L, can be implemented for L=Ht with an O(n) amount of memory allocations and O(nlog_2 n) arithmetic operations per step. The LQN methods with the lowest experimental rate of convergence are shown to be linearly convergent.
2003
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Hartley-type algebras; Displacement formulas; Quasi-Newton methods
DI FIORE, C., Lepore, F., Zellini, P. (2003). Hartley-type algebras in displacement and optimization strategies. LINEAR ALGEBRA AND ITS APPLICATIONS, 366, 215-232 [10.1016/S0024-3795(02)00499-8].
DI FIORE, C; Lepore, F; Zellini, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact