Carbon nanostructures (CNSs) are attractive and promising nanomaterials for the next generation of tissue engineering scaffolds, especially in neural prosthesis. Optimizing scaffold vascularization may be an important strategy to promote the repair of damaged brain tissue. In this context, the idea was to evaluate the cell response of electrospun nanohybrid scaffolds loaded with CNSs. Fibrous composites based on poly(ε-caprolactone) (PCL) and CNSs were fabricated by means of electrospinning technique. High-purity carbon nanofibers (CNFs) and single-wall carbon nanotubes (SWNTs) were studied. A detailed microstructural characterization was performed to evaluate the most favorable experimental conditions for the realization of fibrous PCL/CNS fabrics. Electrospun mats comprised of rather uniform and homogeneous submicrometric fibers were obtained starting from 1:1 v/v mixture of tetrahydrofuran (THF) and N,N dimethylformamide (DMF). In vitro cytocompatibility tests were performed using rat cerebro-microvascular endothelial cells (CECs). Acquired results showed an increased cell viability for PCL/CNS nanocomposites, suggesting these materials as a suitable environment for endothelial cells. These results are indicative of the promising potential of CNS-based nanocomposites in biomedical devices for tissue engineering applications where endothelial functional properties are required.
Bianco, A., Del Gaudio, C., Baiguera, S., Armentano, I., Bertarelli, C., Dottori, M., et al. (2010). Microstructure and cytocompatibility of electrospun nanocomposites based on poly(ε-caprolactone) and carbon nanostructures. INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 33(5), 271-281.
Microstructure and cytocompatibility of electrospun nanocomposites based on poly(ε-caprolactone) and carbon nanostructures
BIANCO, ALESSANDRA;
2010-01-01
Abstract
Carbon nanostructures (CNSs) are attractive and promising nanomaterials for the next generation of tissue engineering scaffolds, especially in neural prosthesis. Optimizing scaffold vascularization may be an important strategy to promote the repair of damaged brain tissue. In this context, the idea was to evaluate the cell response of electrospun nanohybrid scaffolds loaded with CNSs. Fibrous composites based on poly(ε-caprolactone) (PCL) and CNSs were fabricated by means of electrospinning technique. High-purity carbon nanofibers (CNFs) and single-wall carbon nanotubes (SWNTs) were studied. A detailed microstructural characterization was performed to evaluate the most favorable experimental conditions for the realization of fibrous PCL/CNS fabrics. Electrospun mats comprised of rather uniform and homogeneous submicrometric fibers were obtained starting from 1:1 v/v mixture of tetrahydrofuran (THF) and N,N dimethylformamide (DMF). In vitro cytocompatibility tests were performed using rat cerebro-microvascular endothelial cells (CECs). Acquired results showed an increased cell viability for PCL/CNS nanocomposites, suggesting these materials as a suitable environment for endothelial cells. These results are indicative of the promising potential of CNS-based nanocomposites in biomedical devices for tissue engineering applications where endothelial functional properties are required.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.