We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach, we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.
Bartolucci, D., De Marchis, F., Malchiodi, A. (2011). Supercritical conformal metrics on surfaces with conical singularities. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011(24), 5625-5643 [doi:10.1093/imrn/rnq285].
Supercritical conformal metrics on surfaces with conical singularities
BARTOLUCCI, DANIELE;
2011-01-01
Abstract
We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach, we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BDeMMal-IMRN(2011)-2011-24 5625-5643.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
220.68 kB
Formato
Adobe PDF
|
220.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.