We generalize the ‘sup + C inf’ inequality obtained by Shafrir to the solutions of −∆u =Ve u|x| 2αin Ω, with Ω ⊂ R 2 open and bounded, α ∈ (0, 1) and V any measurable function which satisfies 0 < a V b < +∞.
Bartolucci, D. (2010). A "Sup + C Inf" inequality for the equation $-Delta u=fracV|x|^{2alpha} e^u$". PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A, 140A, 1119-1139.
A "Sup + C Inf" inequality for the equation $-Delta u=fracV|x|^{2alpha} e^u$"
BARTOLUCCI, DANIELE
2010-01-01
Abstract
We generalize the ‘sup + C inf’ inequality obtained by Shafrir to the solutions of −∆u =Ve u|x| 2αin Ω, with Ω ⊂ R 2 open and bounded, α ∈ (0, 1) and V any measurable function which satisfies 0 < a V b < +∞.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.