We generalize the ‘sup + C inf’ inequality obtained by Shafrir to the solutions of −∆u =Ve u|x| 2αin Ω, with Ω ⊂ R 2 open and bounded, α ∈ (0, 1) and V any measurable function which satisfies 0 < a V b < +∞.

Bartolucci, D. (2010). A "Sup + C Inf" inequality for the equation $-Delta u=fracV|x|^{2alpha} e^u$". PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A, 140A, 1119-1139.

A "Sup + C Inf" inequality for the equation $-Delta u=fracV|x|^{2alpha} e^u$"

BARTOLUCCI, DANIELE
2010-01-01

Abstract

We generalize the ‘sup + C inf’ inequality obtained by Shafrir to the solutions of −∆u =Ve u|x| 2αin Ω, with Ω ⊂ R 2 open and bounded, α ∈ (0, 1) and V any measurable function which satisfies 0 < a V b < +∞.
2010
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Bartolucci, D. (2010). A "Sup + C Inf" inequality for the equation $-Delta u=fracV|x|^{2alpha} e^u$". PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A, 140A, 1119-1139.
Bartolucci, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact