In this work a complete semi-classical model of an organic solar cell is presented. The different aspects of conversion of light to electricity are taken into account. Correct models for density of state and organic-metal interface are considered in order to include the effect of energetically disorder material properties. Most of the parameters for the model are taken from literature while some were fixed by fitting with several experimental current-voltage characteristics. The comparison between modeling results and experimental data shows consistency and are in good agreement. Finally the model is used to investigate the optimization of hole transport (PEDOT) and active (P3HT:PCBM) layer thicknesses in order to maximize the cell efficiency. The simulation of the efficiency of the cell with varying thickness shows a fine tuning between the exciton generation and the charge recombination, giving clear indications on the optimization of cell performance.
Fallahpour, A., Gagliardi, A., Gentilini, D., Zampetti, A., Santoni, F., AUF DER MAUR, M., et al. (2014). Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells. JOURNAL OF COMPUTATIONAL ELECTRONICS, 13(4), 933-942 [10.1007/s10825-014-0611-y].
Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells
GAGLIARDI, ALESSIO;AUF DER MAUR, MATTHIAS;DI CARLO, ALDO
2014-01-01
Abstract
In this work a complete semi-classical model of an organic solar cell is presented. The different aspects of conversion of light to electricity are taken into account. Correct models for density of state and organic-metal interface are considered in order to include the effect of energetically disorder material properties. Most of the parameters for the model are taken from literature while some were fixed by fitting with several experimental current-voltage characteristics. The comparison between modeling results and experimental data shows consistency and are in good agreement. Finally the model is used to investigate the optimization of hole transport (PEDOT) and active (P3HT:PCBM) layer thicknesses in order to maximize the cell efficiency. The simulation of the efficiency of the cell with varying thickness shows a fine tuning between the exciton generation and the charge recombination, giving clear indications on the optimization of cell performance.File | Dimensione | Formato | |
---|---|---|---|
JCompElectron_13_933_Simulation_SC_Amir.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.