We investigate the possible values for geometric genera of subvarieties in a smooth projective variety. Values which are not attained are called gaps. For curves on a very general surface in P^3, the initial gap interval was found by Xu and the next one in our previous paper, where also the finiteness of the set of gaps was established and an asymptotic upper bound of this set was found. In the present paper we extend some of these results to smooth projective varieties of arbitrary dimension using a different approach.

Ciliberto, C., Flamini, F., Zaidenberg, M. (2016). Gaps for geometric genera. ARCHIV DER MATHEMATIK, 106, 531-541 [10.1007/s00013-016-0908-0].

Gaps for geometric genera

CILIBERTO, CIRO;FLAMINI, FLAMINIO;
2016-05-11

Abstract

We investigate the possible values for geometric genera of subvarieties in a smooth projective variety. Values which are not attained are called gaps. For curves on a very general surface in P^3, the initial gap interval was found by Xu and the next one in our previous paper, where also the finiteness of the set of gaps was established and an asymptotic upper bound of this set was found. In the present paper we extend some of these results to smooth projective varieties of arbitrary dimension using a different approach.
11-mag-2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Geometric Genera, Divisors, Singularities
http://link.springer.com/article/10.1007/s00013-016-0908-0
Ciliberto, C., Flamini, F., Zaidenberg, M. (2016). Gaps for geometric genera. ARCHIV DER MATHEMATIK, 106, 531-541 [10.1007/s00013-016-0908-0].
Ciliberto, C; Flamini, F; Zaidenberg, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ArchivMath2016.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 673.36 kB
Formato Adobe PDF
673.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/135148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact