We prove the existence of nodal solutions for – Δu = ρ sinh u with Dirichlet boundary conditions in bounded, 2D, smooth and non-smooth domains. Indeed, for ρ positive and small enough, we show that there exist at least two pairs of solutions, which change sign exactly once, whose nodal lines intersect the boundary.

Bartolucci, D., Pistoia, A. (2007). Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation. IMA JOURNAL OF APPLIED MATHEMATICS, 72, 706-729 [10.1093/imamat/hxm012].

Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation

BARTOLUCCI, DANIELE;
2007-01-01

Abstract

We prove the existence of nodal solutions for – Δu = ρ sinh u with Dirichlet boundary conditions in bounded, 2D, smooth and non-smooth domains. Indeed, for ρ positive and small enough, we show that there exist at least two pairs of solutions, which change sign exactly once, whose nodal lines intersect the boundary.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
http://imamat.oxfordjournals.org/content/72/6/706.short
Bartolucci, D., Pistoia, A. (2007). Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation. IMA JOURNAL OF APPLIED MATHEMATICS, 72, 706-729 [10.1093/imamat/hxm012].
Bartolucci, D; Pistoia, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact