We prove a rigidity theorem which generalizes a result due to Burns and Krantz (see[3]) for holomorphic self-maps in the unit disk of the complex plane. Essentially, we found that some conditions on the (boundary) Schwarzian derivative 0f a holomorphic self-map at specific points of the boundary of the disk may be sufficient to conclude that a map is a completely determined rational map.

Tauraso, R., Vlacci, F. (2001). Rigidity at the Boundary for Holomorphic Self-Maps of the Unit Disc. COMPLEX VARIABLES THEORY AND APPLICATION, 45(2), 151-165 [10.1080/17476930108815374].

Rigidity at the Boundary for Holomorphic Self-Maps of the Unit Disc

TAURASO, ROBERTO;
2001-01-01

Abstract

We prove a rigidity theorem which generalizes a result due to Burns and Krantz (see[3]) for holomorphic self-maps in the unit disk of the complex plane. Essentially, we found that some conditions on the (boundary) Schwarzian derivative 0f a holomorphic self-map at specific points of the boundary of the disk may be sufficient to conclude that a map is a completely determined rational map.
2001
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
http://dx.medra.org/10.1080/17476930108815374
Tauraso, R., Vlacci, F. (2001). Rigidity at the Boundary for Holomorphic Self-Maps of the Unit Disc. COMPLEX VARIABLES THEORY AND APPLICATION, 45(2), 151-165 [10.1080/17476930108815374].
Tauraso, R; Vlacci, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/134713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact