We characterize ultrafilter convergence and ultrafilter compactness in linearly ordered and generalized ordered topological spaces. In such spaces, and for every ultrafilter D, the notions of D-compactness and of D-pseudocompactness are equivalent. Any product of initially λ-compact generalized ordered topological spaces is still initially λ-compact. On the other hand, preservation under products of certain compactness properties is independent from the usual axioms for set theory.

Lipparini, P. (2015). Ultrafilter Convergence in Ordered Topological Spaces. ORDER [10.1007/s11083-015-9365-9].

Ultrafilter Convergence in Ordered Topological Spaces

LIPPARINI, PAOLO
2015-01-01

Abstract

We characterize ultrafilter convergence and ultrafilter compactness in linearly ordered and generalized ordered topological spaces. In such spaces, and for every ultrafilter D, the notions of D-compactness and of D-pseudocompactness are equivalent. Any product of initially λ-compact generalized ordered topological spaces is still initially λ-compact. On the other hand, preservation under products of certain compactness properties is independent from the usual axioms for set theory.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
Settore MAT/01 - LOGICA MATEMATICA
English
Con Impact Factor ISI
Linearly ordered Generalized ordered topological space Ultrafilter convergence Compactness Pseudocompactness (pseudo-)gap Converging ν-sequence (weak) [ν, ν]-compactness (weak) initial λ-compactness Complete accumulation point λ-boundedness Decomposable Descendingly complete Regular ultrafilter
http://link.springer.com/article/10.1007/s11083-015-9365-9
Lipparini, P. (2015). Ultrafilter Convergence in Ordered Topological Spaces. ORDER [10.1007/s11083-015-9365-9].
Lipparini, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
A2GOuf.pdf

accesso aperto

Descrizione: preprint
Licenza: Non specificato
Dimensione 279.71 kB
Formato Adobe PDF
279.71 kB Adobe PDF Visualizza/Apri
A2GOuf.pdf

accesso aperto

Descrizione: preprint
Licenza: Non specificato
Dimensione 279.71 kB
Formato Adobe PDF
279.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/134354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact