We characterize ultrafilter convergence and ultrafilter compactness in linearly ordered and generalized ordered topological spaces. In such spaces, and for every ultrafilter D, the notions of D-compactness and of D-pseudocompactness are equivalent. Any product of initially λ-compact generalized ordered topological spaces is still initially λ-compact. On the other hand, preservation under products of certain compactness properties is independent from the usual axioms for set theory.
Lipparini, P. (2015). Ultrafilter Convergence in Ordered Topological Spaces. ORDER [10.1007/s11083-015-9365-9].
Ultrafilter Convergence in Ordered Topological Spaces
LIPPARINI, PAOLO
2015-01-01
Abstract
We characterize ultrafilter convergence and ultrafilter compactness in linearly ordered and generalized ordered topological spaces. In such spaces, and for every ultrafilter D, the notions of D-compactness and of D-pseudocompactness are equivalent. Any product of initially λ-compact generalized ordered topological spaces is still initially λ-compact. On the other hand, preservation under products of certain compactness properties is independent from the usual axioms for set theory.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A2GOuf.pdf
accesso aperto
Descrizione: preprint
Licenza:
Non specificato
Dimensione
279.71 kB
Formato
Adobe PDF
|
279.71 kB | Adobe PDF | Visualizza/Apri |
A2GOuf.pdf
accesso aperto
Descrizione: preprint
Licenza:
Non specificato
Dimensione
279.71 kB
Formato
Adobe PDF
|
279.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.