The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.

Goveas, J., O'Dwyer, L., Mascalchi, M., Cosottini, M., Diciotti, S., De Santis, S., et al. (2015). Diffusion-MRI in neurodegenerative disorders. MAGNETIC RESONANCE IMAGING, 33(7), 853-876 [10.1016/j.mri.2015.04.006].

Diffusion-MRI in neurodegenerative disorders

TOSCHI, NICOLA;
2015-01-01

Abstract

The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
Settore MED/37 - NEURORADIOLOGIA
Settore MED/36 - DIAGNOSTICA PER IMMAGINI E RADIOTERAPIA
Settore MED/26 - NEUROLOGIA
English
Alzheimer’s disease; Amyotrophic lateral sclerosis; Degenerative ataxias; Diffusion-MRI; Huntington’s disease; Parkinson’s disease
Goveas, J., O'Dwyer, L., Mascalchi, M., Cosottini, M., Diciotti, S., De Santis, S., et al. (2015). Diffusion-MRI in neurodegenerative disorders. MAGNETIC RESONANCE IMAGING, 33(7), 853-876 [10.1016/j.mri.2015.04.006].
Goveas, J; O'Dwyer, L; Mascalchi, M; Cosottini, M; Diciotti, S; De Santis, S; Passamonti, L; Tessa, C; Toschi, N; Giannelli, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/134319
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 65
social impact