Despite several types of fluorescent sensing molecules have been proposed and examined to signal Hg(2+) ion binding, the development of fluorescence-based devices for in-field Hg(2+) detection and screening in environmental and industrial samples is still a challenging task. Herein, we report the synthesis and characterization of three new coumarin-based fluorescent chemosensors featuring mixed thia/aza macrocyclic framework as receptors units, that is, ligands L1-L3. These probes revealed an OFF-ON selective response to the presence of Hg(2+) ions in MeCN/H2 O 4:1 (v/v), which allowed imaging of this metal ion in Cos-7 cells in vitro. Once included in silica core-polyethylene glycol (PEG) shell nanoparticles or supported on polyvinyl chloride (PVC)-based polymeric membranes, ligands L1-L3 can also selectively sense Hg(2+) ions in pure water. In particular we have developed an optical sensing array tacking advantage of the fluorescent properties of ligand L3 and based on the computer screen photo assisted technique (CSPT). In the device ligand L3 is dispersed into PVC membranes and it quantitatively responds to Hg(2+) ions in natural water samples.

Bazzicalupi, C., Caltagirone, C., Cao, Z., Chen, Q., Dinatale, C., Garau, A., et al. (2013). Multimodal use of new coumarin-based fluorescent chemosensors: Towards highly selective optical sensors for Hg2+ probing. CHEMISTRY-A EUROPEAN JOURNAL, 19(43), 14639-14653 [10.1002/chem.201302090].

Multimodal use of new coumarin-based fluorescent chemosensors: Towards highly selective optical sensors for Hg2+ probing

Dinatale, C;LVOVA, LARISA;PAOLESSE, ROBERTO;
2013-01-01

Abstract

Despite several types of fluorescent sensing molecules have been proposed and examined to signal Hg(2+) ion binding, the development of fluorescence-based devices for in-field Hg(2+) detection and screening in environmental and industrial samples is still a challenging task. Herein, we report the synthesis and characterization of three new coumarin-based fluorescent chemosensors featuring mixed thia/aza macrocyclic framework as receptors units, that is, ligands L1-L3. These probes revealed an OFF-ON selective response to the presence of Hg(2+) ions in MeCN/H2 O 4:1 (v/v), which allowed imaging of this metal ion in Cos-7 cells in vitro. Once included in silica core-polyethylene glycol (PEG) shell nanoparticles or supported on polyvinyl chloride (PVC)-based polymeric membranes, ligands L1-L3 can also selectively sense Hg(2+) ions in pure water. In particular we have developed an optical sensing array tacking advantage of the fluorescent properties of ligand L3 and based on the computer screen photo assisted technique (CSPT). In the device ligand L3 is dispersed into PVC membranes and it quantitatively responds to Hg(2+) ions in natural water samples.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/07 - FONDAMENTI CHIMICI DELLE TECNOLOGIE
English
Con Impact Factor ISI
coumarins; fluorescent probes; mercury; nanoparticles; sensors; Animals; COS Cells; Cercopithecus aethiops; Coumarins; Fluorescent Dyes; Ions; Mercury; Microscopy, Confocal; Nanoparticles; Polyethylene Glycols; Polyvinyl Chloride; Quantum Theory; Water; Spectrometry, Fluorescence
Bazzicalupi, C., Caltagirone, C., Cao, Z., Chen, Q., Dinatale, C., Garau, A., et al. (2013). Multimodal use of new coumarin-based fluorescent chemosensors: Towards highly selective optical sensors for Hg2+ probing. CHEMISTRY-A EUROPEAN JOURNAL, 19(43), 14639-14653 [10.1002/chem.201302090].
Bazzicalupi, C; Caltagirone, C; Cao, Z; Chen, Q; Dinatale, C; Garau, A; Lippolis, V; Lvova, L; Liu, H; Lundstrom, I; Mostallino, M; Nieddu, M; Paolesse, R; Prodi, L; Sgarzi, M; Zaccheroni, N
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Chem Eur J. Hg.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/133989
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 69
social impact