We develop a quantum duality principle for coisotropic subgroups of a (formal) Poisson group and its dual: namely, starting from a quantum coisotropic subgroup (for a quantization of a given Poisson group) we provide functorial recipes to produce quantizations of the dual coisotropic subgroup (in the dual formal Poisson group). By the natural link between subgroups and homogeneous spaces, we argue a quantum duality principle for Poisson homogeneous spaces which are Poisson quotients, i.e. have at least one zero-dimensional symplectic leaf. As an application, we provide an explicit quantization of the homogeneous SL_n^*-space of Stokes matrices, with the Poisson structure given by Dubrovin and Ugaglia.

Ciccoli, N., Gavarini, F. (2006). A quantum duality principle for coisotropic subgroups and Poisson quotients. ADVANCES IN MATHEMATICS, 199(1), 104-135 [10.1016/j.aim.2005.01.009].

A quantum duality principle for coisotropic subgroups and Poisson quotients

GAVARINI, FABIO
2006-01-01

Abstract

We develop a quantum duality principle for coisotropic subgroups of a (formal) Poisson group and its dual: namely, starting from a quantum coisotropic subgroup (for a quantization of a given Poisson group) we provide functorial recipes to produce quantizations of the dual coisotropic subgroup (in the dual formal Poisson group). By the natural link between subgroups and homogeneous spaces, we argue a quantum duality principle for Poisson homogeneous spaces which are Poisson quotients, i.e. have at least one zero-dimensional symplectic leaf. As an application, we provide an explicit quantization of the homogeneous SL_n^*-space of Stokes matrices, with the Poisson structure given by Dubrovin and Ugaglia.
2006
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Quantum groups; Poisson homogeneous spaces; Coisotropic subgroups
http://www.sciencedirect.com/science/article/pii/S0001870805000356
Ciccoli, N., Gavarini, F. (2006). A quantum duality principle for coisotropic subgroups and Poisson quotients. ADVANCES IN MATHEMATICS, 199(1), 104-135 [10.1016/j.aim.2005.01.009].
Ciccoli, N; Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
qdpsEhs_form-ref.pdf

accesso aperto

Descrizione: This is the PDF file of the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 398.46 kB
Formato Adobe PDF
398.46 kB Adobe PDF Visualizza/Apri
qdpsEhs-form_STA.pdf

solo utenti autorizzati

Descrizione: This is the PDF file of the Editor's (Elsevier) printed version - Authors' own offprint copy
Licenza: Copyright dell'editore
Dimensione 359.1 kB
Formato Adobe PDF
359.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 290 kB
Formato Adobe PDF
290 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 152.17 kB
Formato Adobe PDF
152.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact