We develop a quantum duality principle for coisotropic subgroups of a (formal) Poisson group and its dual: namely, starting from a quantum coisotropic subgroup (for a quantization of a given Poisson group) we provide functorial recipes to produce quantizations of the dual coisotropic subgroup (in the dual formal Poisson group). By the natural link between subgroups and homogeneous spaces, we argue a quantum duality principle for Poisson homogeneous spaces which are Poisson quotients, i.e. have at least one zero-dimensional symplectic leaf. As an application, we provide an explicit quantization of the homogeneous SL_n^*-space of Stokes matrices, with the Poisson structure given by Dubrovin and Ugaglia.
Ciccoli, N., Gavarini, F. (2006). A quantum duality principle for coisotropic subgroups and Poisson quotients. ADVANCES IN MATHEMATICS, 199(1), 104-135 [10.1016/j.aim.2005.01.009].
A quantum duality principle for coisotropic subgroups and Poisson quotients
GAVARINI, FABIO
2006-01-01
Abstract
We develop a quantum duality principle for coisotropic subgroups of a (formal) Poisson group and its dual: namely, starting from a quantum coisotropic subgroup (for a quantization of a given Poisson group) we provide functorial recipes to produce quantizations of the dual coisotropic subgroup (in the dual formal Poisson group). By the natural link between subgroups and homogeneous spaces, we argue a quantum duality principle for Poisson homogeneous spaces which are Poisson quotients, i.e. have at least one zero-dimensional symplectic leaf. As an application, we provide an explicit quantization of the homogeneous SL_n^*-space of Stokes matrices, with the Poisson structure given by Dubrovin and Ugaglia.File | Dimensione | Formato | |
---|---|---|---|
qdpsEhs_form-ref.pdf
accesso aperto
Descrizione: This is the PDF file of the Authors' own post-print version
Licenza:
Copyright dell'editore
Dimensione
398.46 kB
Formato
Adobe PDF
|
398.46 kB | Adobe PDF | Visualizza/Apri |
qdpsEhs-form_STA.pdf
solo utenti autorizzati
Descrizione: This is the PDF file of the Editor's (Elsevier) printed version - Authors' own offprint copy
Licenza:
Copyright dell'editore
Dimensione
359.1 kB
Formato
Adobe PDF
|
359.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
290 kB
Formato
Adobe PDF
|
290 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
152.17 kB
Formato
Adobe PDF
|
152.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.