Within the quantum function algebra F_q[SL_2], we study the subset \cal{F}_q[SL_2] - introduced in [Ga1] - of all elements of F_q[SL_2] which are Z[q,q^{-1}]-valued when paired with \cal{U}_q(sl_2), the unrestricted Z[q,q^{-1}]-integral form of U_q(sl_2) introduced by De Concini, Kac and Procesi. In particular we yield a presentation of it by generators and relations, and a nice Z[q,q^{-1}]-spanning set (of PBW type). Moreover, we give a direct proof that \cal{F}q[SL_2] is a Hopf subalgebra of F_q[SL_2], and that \cal{F}_q[SL_2]|_{q=1} = U_Z(sl_2^*). We describe explicitly its specializations at roots of 1, say \varepsilon, and the associated quantum Frobenius (epi)morphism (also introduced in [Ga1]) from \cal{F}_\varepsilon[SL_2] to \cal{F}_1[SL_2] \cong U_Z(sl_2^*). The same analysis is done for \cal{F}_q[GL_2], with similar results, and also (as a key, intermediate step) for \cal{F}_q[Mat_2].
Gavarini, F., Rakic, Z. (2009). F_q[M_2], F_q[GL_2] and F_q[SL_2] as quantized hyperalgebras. COMMUNICATIONS IN ALGEBRA, 37(1), 95-119 [10.1080/00927870802241238].
F_q[M_2], F_q[GL_2] and F_q[SL_2] as quantized hyperalgebras
GAVARINI, FABIO;
2009-01-01
Abstract
Within the quantum function algebra F_q[SL_2], we study the subset \cal{F}_q[SL_2] - introduced in [Ga1] - of all elements of F_q[SL_2] which are Z[q,q^{-1}]-valued when paired with \cal{U}_q(sl_2), the unrestricted Z[q,q^{-1}]-integral form of U_q(sl_2) introduced by De Concini, Kac and Procesi. In particular we yield a presentation of it by generators and relations, and a nice Z[q,q^{-1}]-spanning set (of PBW type). Moreover, we give a direct proof that \cal{F}q[SL_2] is a Hopf subalgebra of F_q[SL_2], and that \cal{F}_q[SL_2]|_{q=1} = U_Z(sl_2^*). We describe explicitly its specializations at roots of 1, say \varepsilon, and the associated quantum Frobenius (epi)morphism (also introduced in [Ga1]) from \cal{F}_\varepsilon[SL_2] to \cal{F}_1[SL_2] \cong U_Z(sl_2^*). The same analysis is done for \cal{F}_q[GL_2], with similar results, and also (as a key, intermediate step) for \cal{F}_q[Mat_2].File | Dimensione | Formato | |
---|---|---|---|
FqSL2QHyA-ART_ref.pdf
accesso aperto
Descrizione: This is the PDF file of the Authors' own post-print version
Licenza:
Copyright dell'editore
Dimensione
236.96 kB
Formato
Adobe PDF
|
236.96 kB | Adobe PDF | Visualizza/Apri |
FqSL2QHyA-STA.pdf
solo utenti autorizzati
Descrizione: This is the PDF file of the Authors' own offprint copy - i.e., the Editor's printed version
Licenza:
Copyright dell'editore
Dimensione
238.57 kB
Formato
Adobe PDF
|
238.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
266.61 kB
Formato
Adobe PDF
|
266.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
159.13 kB
Formato
Adobe PDF
|
159.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.