Within the quantum function algebra F_q[SL_2], we study the subset \cal{F}_q[SL_2] - introduced in [Ga1] - of all elements of F_q[SL_2] which are Z[q,q^{-1}]-valued when paired with \cal{U}_q(sl_2), the unrestricted Z[q,q^{-1}]-integral form of U_q(sl_2) introduced by De Concini, Kac and Procesi. In particular we yield a presentation of it by generators and relations, and a nice Z[q,q^{-1}]-spanning set (of PBW type). Moreover, we give a direct proof that \cal{F}q[SL_2] is a Hopf subalgebra of F_q[SL_2], and that \cal{F}_q[SL_2]|_{q=1} = U_Z(sl_2^*). We describe explicitly its specializations at roots of 1, say \varepsilon, and the associated quantum Frobenius (epi)morphism (also introduced in [Ga1]) from \cal{F}_\varepsilon[SL_2] to \cal{F}_1[SL_2] \cong U_Z(sl_2^*). The same analysis is done for \cal{F}_q[GL_2], with similar results, and also (as a key, intermediate step) for \cal{F}_q[Mat_2].

Gavarini, F., Rakic, Z. (2009). F_q[M_2], F_q[GL_2] and F_q[SL_2] as quantized hyperalgebras. COMMUNICATIONS IN ALGEBRA, 37(1), 95-119 [10.1080/00927870802241238].

F_q[M_2], F_q[GL_2] and F_q[SL_2] as quantized hyperalgebras

GAVARINI, FABIO;
2009-01-01

Abstract

Within the quantum function algebra F_q[SL_2], we study the subset \cal{F}_q[SL_2] - introduced in [Ga1] - of all elements of F_q[SL_2] which are Z[q,q^{-1}]-valued when paired with \cal{U}_q(sl_2), the unrestricted Z[q,q^{-1}]-integral form of U_q(sl_2) introduced by De Concini, Kac and Procesi. In particular we yield a presentation of it by generators and relations, and a nice Z[q,q^{-1}]-spanning set (of PBW type). Moreover, we give a direct proof that \cal{F}q[SL_2] is a Hopf subalgebra of F_q[SL_2], and that \cal{F}_q[SL_2]|_{q=1} = U_Z(sl_2^*). We describe explicitly its specializations at roots of 1, say \varepsilon, and the associated quantum Frobenius (epi)morphism (also introduced in [Ga1]) from \cal{F}_\varepsilon[SL_2] to \cal{F}_1[SL_2] \cong U_Z(sl_2^*). The same analysis is done for \cal{F}_q[GL_2], with similar results, and also (as a key, intermediate step) for \cal{F}_q[Mat_2].
2009
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
Hopf Algebras; Quantum Groups.
http://ejournals.ebsco.com/direct.asp?ArticleID=4B169F9354E6DCD801E2
Gavarini, F., Rakic, Z. (2009). F_q[M_2], F_q[GL_2] and F_q[SL_2] as quantized hyperalgebras. COMMUNICATIONS IN ALGEBRA, 37(1), 95-119 [10.1080/00927870802241238].
Gavarini, F; Rakic, Z
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
FqSL2QHyA-ART_ref.pdf

accesso aperto

Descrizione: This is the PDF file of the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 236.96 kB
Formato Adobe PDF
236.96 kB Adobe PDF Visualizza/Apri
FqSL2QHyA-STA.pdf

solo utenti autorizzati

Descrizione: This is the PDF file of the Authors' own offprint copy - i.e., the Editor's printed version
Licenza: Copyright dell'editore
Dimensione 238.57 kB
Formato Adobe PDF
238.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 266.61 kB
Formato Adobe PDF
266.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 159.13 kB
Formato Adobe PDF
159.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact