We present some correlated fractional counting processes on a finite time interval. This will be done by considering a slight generalization of the processes in [9]. The main case concerns a class of space-time fractional Poisson processes and, when the correlation parameter is equal to zero, the univariate distributions coincide with the ones of the space-time fractional Poisson process in [24]. On the other hand, when we consider the time fractional Poisson process, the multivariate finite dimensional distributions are different from the ones presented for the renewal process in [26]. Another case concerns a class of fractional negative binomial processes.

Beghin, L., Garra, R., Macci, C. (2015). Correlated fractional counting processes on a finite time interval. JOURNAL OF APPLIED PROBABILITY, 52(4), 1045-1061 [10.1017/S0021900200113075].

Correlated fractional counting processes on a finite time interval

MACCI, CLAUDIO
2015-01-01

Abstract

We present some correlated fractional counting processes on a finite time interval. This will be done by considering a slight generalization of the processes in [9]. The main case concerns a class of space-time fractional Poisson processes and, when the correlation parameter is equal to zero, the univariate distributions coincide with the ones of the space-time fractional Poisson process in [24]. On the other hand, when we consider the time fractional Poisson process, the multivariate finite dimensional distributions are different from the ones presented for the renewal process in [26]. Another case concerns a class of fractional negative binomial processes.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Beghin, L., Garra, R., Macci, C. (2015). Correlated fractional counting processes on a finite time interval. JOURNAL OF APPLIED PROBABILITY, 52(4), 1045-1061 [10.1017/S0021900200113075].
Beghin, L; Garra, R; Macci, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/133487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact