Alzheimer's disease (AD) is a complex disorder that affects the central nervous system causing a severe neurodegeneration. This pathology affects an increasing number of people worldwide due to the overall aging of the human population. In recent years SUMO protein modification has emerged as a possible cellular mechanism involved in AD. Some of the proteins engaged in the physiopathological process of AD, like BACE1, GSK3-β tau, AβPP, and JNK, are in fact subject to protein SUMO modifications or interactions. Here, we have investigated the SUMO/deSUMOylation balance and SUMO-related proteins during the onset and progression of the pathology in the Tg2576 mouse model of AD. We examined four age-stages (1.5, 3, 6, 17 months old) and observed shows an increase in SUMO-1 protein conjugation at 3 and 6 months in transgenic mice with respect to WT in both cortex and hippocampus. Interestingly this is paralleled by increased expression levels of Ubc9 and SENP1 in both brain regions. At 6 months of age also the SUMO-1 mRNA resulted augmented. SUMO-2-ylation was surprisingly decreased in old transgenic mice and was unaltered in the other time windows. The fact that alterations in SUMO/deSUMOylation equilibrium occur from the early phases of AD suggests that global posttranslational modifications may play an important role in the mechanisms underlying disease pathogenesis, thus providing potential targets for pharmacological interventions.

Nistico', R.g., Ferraina, C., Marconi, V., Blandini, F., Negri, L., Egebjerg, J., et al. (2014). Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer's disease. FRONTIERS IN PHARMACOLOGY, 7(5), 63 [10.3389/fphar.2014.00063].

Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer's disease

NISTICO', ROBERT GIOVANNI;
2014-01-01

Abstract

Alzheimer's disease (AD) is a complex disorder that affects the central nervous system causing a severe neurodegeneration. This pathology affects an increasing number of people worldwide due to the overall aging of the human population. In recent years SUMO protein modification has emerged as a possible cellular mechanism involved in AD. Some of the proteins engaged in the physiopathological process of AD, like BACE1, GSK3-β tau, AβPP, and JNK, are in fact subject to protein SUMO modifications or interactions. Here, we have investigated the SUMO/deSUMOylation balance and SUMO-related proteins during the onset and progression of the pathology in the Tg2576 mouse model of AD. We examined four age-stages (1.5, 3, 6, 17 months old) and observed shows an increase in SUMO-1 protein conjugation at 3 and 6 months in transgenic mice with respect to WT in both cortex and hippocampus. Interestingly this is paralleled by increased expression levels of Ubc9 and SENP1 in both brain regions. At 6 months of age also the SUMO-1 mRNA resulted augmented. SUMO-2-ylation was surprisingly decreased in old transgenic mice and was unaltered in the other time windows. The fact that alterations in SUMO/deSUMOylation equilibrium occur from the early phases of AD suggests that global posttranslational modifications may play an important role in the mechanisms underlying disease pathogenesis, thus providing potential targets for pharmacological interventions.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/14 - FARMACOLOGIA
English
Alzheimer's disease; SENP1; SUMO-1; SUMO-2/3; Tg2576; Ubc9; neurodegeneration; sumoylation
Nistico', R.g., Ferraina, C., Marconi, V., Blandini, F., Negri, L., Egebjerg, J., et al. (2014). Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer's disease. FRONTIERS IN PHARMACOLOGY, 7(5), 63 [10.3389/fphar.2014.00063].
Nistico', Rg; Ferraina, C; Marconi, V; Blandini, F; Negri, L; Egebjerg, J; Feligioni, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
FRONT PHARMACOL 2014 AGE RELATED.pdf

accesso aperto

Descrizione: Age-related changes of protein SUMOylation balance in the APP Tg2576 mouse model of Alzheimer's disease
Licenza: Copyright dell'editore
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/133122
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 56
social impact