We generalize a result by H. Brezis, Y. Y. Li and I. Shafrir [6] and obtain an Harnack type inequality for solutions of − u = |x| 2α Ve u in for ⊂ R 2 open, α ∈ (−1, 0) and V any Lipschitz continuous function satisfying 0 < a ≤ V ≤ b < ∞ and ∇V ∞ ≤ A.

Bartolucci, D. (2012). A Sup + Inf inequality for Liouville type equations with weights. JOURNAL D'ANALYSE MATHEMATIQUE, 117(13), 29-46 [DOI:10.1007/s11854-012-0013-7].

A Sup + Inf inequality for Liouville type equations with weights

BARTOLUCCI, DANIELE
2012-01-01

Abstract

We generalize a result by H. Brezis, Y. Y. Li and I. Shafrir [6] and obtain an Harnack type inequality for solutions of − u = |x| 2α Ve u in for ⊂ R 2 open, α ∈ (−1, 0) and V any Lipschitz continuous function satisfying 0 < a ≤ V ≤ b < ∞ and ∇V ∞ ≤ A.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
Harnack type inequalities; Liouville type equations; concentration phenomena
Bartolucci, D. (2012). A Sup + Inf inequality for Liouville type equations with weights. JOURNAL D'ANALYSE MATHEMATIQUE, 117(13), 29-46 [DOI:10.1007/s11854-012-0013-7].
Bartolucci, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact