We generalize a result by H. Brezis, Y. Y. Li and I. Shafrir [6] and obtain an Harnack type inequality for solutions of − u = |x| 2α Ve u in for ⊂ R 2 open, α ∈ (−1, 0) and V any Lipschitz continuous function satisfying 0 < a ≤ V ≤ b < ∞ and ∇V ∞ ≤ A.
Bartolucci, D. (2012). A Sup + Inf inequality for Liouville type equations with weights. JOURNAL D'ANALYSE MATHEMATIQUE, 117(13), 29-46 [DOI:10.1007/s11854-012-0013-7].
A Sup + Inf inequality for Liouville type equations with weights
BARTOLUCCI, DANIELE
2012-01-01
Abstract
We generalize a result by H. Brezis, Y. Y. Li and I. Shafrir [6] and obtain an Harnack type inequality for solutions of − u = |x| 2α Ve u in for ⊂ R 2 open, α ∈ (−1, 0) and V any Lipschitz continuous function satisfying 0 < a ≤ V ≤ b < ∞ and ∇V ∞ ≤ A.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.