RanBPM is a recently identified scaffold protein that links and modulates interactions between cell surface receptors and their intracellular signaling pathways. RanBPM has been shown to interact with a variety of functionally unrelated proteins; however, its function remains unclear. Here, we show that RanBPM is essential for normal gonad development as both male and female RanBPM(-/-) mice are sterile. In the mutant testis there was a marked decrease in spermatogonia proliferation during postnatal development. Strikingly, the first wave of spermatogenesis was totally compromised, as seminiferous tubules of homozygous mutant animals were devoid of post-meiotic germ cells. We determined that spermatogenesis was arrested around the late pachytene-diplotene stages of prophase I; surprisingly, without any obvious defect in chromosome synapsis. Interestingly, RanBPM deletion led to a remarkably quick disappearance of all germ cell types at around one month of age, suggesting that spermatogonia stem cells are also affected by the mutation. Moreover, in chimeric mice generated with RanBPM(-/-) embryonic stem cells all mutant germ cells disappeared by 3 weeks of age suggesting that RanBPM is acting in a cell-autonomous way in germ cells. RanBPM homozygous mutant females displayed a premature ovarian failure due to a depletion of the germ cell pool at the end of prophase I, as in males. Taken together, our results highlight a crucial role for RanBPM in mammalian gametogenesis in both genders.

Puverel, S., Barrick, C., DOLCI IANNINI, S., Coppola, V., Tessarollo, L. (2011). RanBPM is essential for mouse spermatogenesis and oogenesis. DEVELOPMENT, 138(12), 2511-2521 [10.1242/dev.062505].

RanBPM is essential for mouse spermatogenesis and oogenesis

DOLCI IANNINI, SUSANNA;
2011-06-01

Abstract

RanBPM is a recently identified scaffold protein that links and modulates interactions between cell surface receptors and their intracellular signaling pathways. RanBPM has been shown to interact with a variety of functionally unrelated proteins; however, its function remains unclear. Here, we show that RanBPM is essential for normal gonad development as both male and female RanBPM(-/-) mice are sterile. In the mutant testis there was a marked decrease in spermatogonia proliferation during postnatal development. Strikingly, the first wave of spermatogenesis was totally compromised, as seminiferous tubules of homozygous mutant animals were devoid of post-meiotic germ cells. We determined that spermatogenesis was arrested around the late pachytene-diplotene stages of prophase I; surprisingly, without any obvious defect in chromosome synapsis. Interestingly, RanBPM deletion led to a remarkably quick disappearance of all germ cell types at around one month of age, suggesting that spermatogonia stem cells are also affected by the mutation. Moreover, in chimeric mice generated with RanBPM(-/-) embryonic stem cells all mutant germ cells disappeared by 3 weeks of age suggesting that RanBPM is acting in a cell-autonomous way in germ cells. RanBPM homozygous mutant females displayed a premature ovarian failure due to a depletion of the germ cell pool at the end of prophase I, as in males. Taken together, our results highlight a crucial role for RanBPM in mammalian gametogenesis in both genders.
giu-2011
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/16 - ANATOMIA UMANA
English
Con Impact Factor ISI
Puverel, S., Barrick, C., DOLCI IANNINI, S., Coppola, V., Tessarollo, L. (2011). RanBPM is essential for mouse spermatogenesis and oogenesis. DEVELOPMENT, 138(12), 2511-2521 [10.1242/dev.062505].
Puverel, S; Barrick, C; DOLCI IANNINI, S; Coppola, V; Tessarollo, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 37
social impact