A class xi of algebras of symmetric nxn matrices, related to Toeplitz-plus-Hankel structures and including the well-known algebra H diagonalized by the Hartley transform, is investigated. The algebras of xi are then exploited in a general displacement decomposition of an arbitrary nxn matrix A. Any algebra of xi is a 1-space, i.e., it is spanned by n matrices having as first rows the vectors of the canonical basis. The notion of 1-space (which generalizes the previous notions of L1 space [Bevilacqua and Zellini, Linear and Multilinear Algebra, 25 (1989), pp.1-25] and Hessenberg algebra [Di Fiore and Zellini, Linear Algebra Appl., 229 (1995), pp.49-99]) finally leads to the identification in xi of three new (non-Hessenberg) matrix algebras close to H, which are shown to be associated with fast Hartley-type transforms. These algebras are also involved in new efficient centrosymmetric Toeplitz-plus-Hankel inversion formulas.
DI FIORE, C. (2000). Matrix algebras and displacement decompositions. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 21(2), 646-667 [10.1137/S0895479896300747].
Matrix algebras and displacement decompositions
DI FIORE, CARMINE
2000-01-01
Abstract
A class xi of algebras of symmetric nxn matrices, related to Toeplitz-plus-Hankel structures and including the well-known algebra H diagonalized by the Hartley transform, is investigated. The algebras of xi are then exploited in a general displacement decomposition of an arbitrary nxn matrix A. Any algebra of xi is a 1-space, i.e., it is spanned by n matrices having as first rows the vectors of the canonical basis. The notion of 1-space (which generalizes the previous notions of L1 space [Bevilacqua and Zellini, Linear and Multilinear Algebra, 25 (1989), pp.1-25] and Hessenberg algebra [Di Fiore and Zellini, Linear Algebra Appl., 229 (1995), pp.49-99]) finally leads to the identification in xi of three new (non-Hessenberg) matrix algebras close to H, which are shown to be associated with fast Hartley-type transforms. These algebras are also involved in new efficient centrosymmetric Toeplitz-plus-Hankel inversion formulas.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.