An increase in renewable energy sources (RWE) will bring about a great change in the national electric grid, which will operate intelligently (smart grid) in order to manage the supply of several energy producers and to cover the unpredictability of RWE. Nevertheless, in order to become smart, the future electrical networks need active distributed units able to assure services like load following, back-up power, power quality disturbance compensation and peak shaving. Fuel cell systems, especially those fed with hydrogen, have reached considerable performance targets in laboratory conditions. Combining high efficiency and fast regulating behaviour (power on demand), even at partial loads and on small size units, PEM fuel cell systems are more and more investigated as components of the incoming power networks. The aim of this work is to highlight the fuel cells actual performances, their behaviour during grid connected operation and, particularly, the phenomena of materials degradation that can appear in these applications. At first, the research activity was addressed to the investigation on a developed 5 kW PEM fuel cell system, including the start-up and warm up procedure, the analysis of the dynamic behaviour linked to temperature and load variations. Accordingly, tests were conducted both on fuel cell systems and single cells in order to compare the performances evaluated with dc and ac loads. In fact, power drawn by single phase grids contains a low frequency sinusoidal fluctuation that brings a large ripple on the stack output current. The tests on single cells have determined the degradation occurred on catalyst material due to the effect of this kind of dynamic loads.
L'incremento delle sorgenti ad energia rinnovabile porterà un grande cambiamento sulla rete elettrica nazionale, la quale dovrà operare in modo intelligente per gestire la fornitura di molti produttori di energia distribuita e per compensare l'imprevedibilità delle rinnovabili. Tuttavia, per poter far ciò, le reti elettriche del futuro necessitano di generatori distribuiti capaci di assicurare servizi quali l'inseguimento del carico, l'accumulo di energia, la compensazione dei disturbi e che abbiano un effetto mitigante sui picchi di carico e/o di generazione. I sistemi a celle a combustibile, specialmente quelli alimentati ad idrogeno, hanno raggiunto considerevoli target in termini di prestazioni in condizioni di laboratorio. Combinando alta efficienza ed un comportamento dinamico veloce (disponibilità di potenza immediata su richiesta), anche a carichi parziali e con piccole taglie, i sistemi a cella a combustibile di tipo PEM sono sempre di più analizzati nell'ottica del loro impiego nelle nascenti reti di potenza. Lo scopo di questo lavoro è mostrare le attuali performance delle fuel cell, il loro comportamento durante il funzionamento con la rete elettrica ed, in particolare, i fenomeni relativi alla degradazione dei materiali che possono verificarsi in questo tipo di applicazioni. Dapprima l'attività di ricerca è stata indirizzata allo sviluppo di un sistema da 5 kW di tipo PEM, considerando le procedure di start up e di warm up, l'analisi del comportamento dinamico in funzione della variazione della temperatura e del carico elettrico. Conseguentemente, alcuni test sono stati condotti sia su sistemi che su monocella in modo da poter confrontare le prestazioni in caso di carichi in corrente continua ed alternata. Infatti, la potenza in reti monofase contiene una fluttuazione sinusoidale a bassa frequenza che procura un ripple sulla corrente di uscita dello stack. I test hanno mostrato la degradazione del materiale del catalizzatore dovuta a questo tipo di dinamica.
Sergi, F. (2010). PEM fuel cell system analysis for grid connected applications [10.58015/sergi-francesco_phd2010-06-23].
PEM fuel cell system analysis for grid connected applications
SERGI, FRANCESCO
2010-06-23
Abstract
An increase in renewable energy sources (RWE) will bring about a great change in the national electric grid, which will operate intelligently (smart grid) in order to manage the supply of several energy producers and to cover the unpredictability of RWE. Nevertheless, in order to become smart, the future electrical networks need active distributed units able to assure services like load following, back-up power, power quality disturbance compensation and peak shaving. Fuel cell systems, especially those fed with hydrogen, have reached considerable performance targets in laboratory conditions. Combining high efficiency and fast regulating behaviour (power on demand), even at partial loads and on small size units, PEM fuel cell systems are more and more investigated as components of the incoming power networks. The aim of this work is to highlight the fuel cells actual performances, their behaviour during grid connected operation and, particularly, the phenomena of materials degradation that can appear in these applications. At first, the research activity was addressed to the investigation on a developed 5 kW PEM fuel cell system, including the start-up and warm up procedure, the analysis of the dynamic behaviour linked to temperature and load variations. Accordingly, tests were conducted both on fuel cell systems and single cells in order to compare the performances evaluated with dc and ac loads. In fact, power drawn by single phase grids contains a low frequency sinusoidal fluctuation that brings a large ripple on the stack output current. The tests on single cells have determined the degradation occurred on catalyst material due to the effect of this kind of dynamic loads.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Francesco Sergi.pdf
accesso aperto
Licenza:
Copyright degli autori
Dimensione
6.03 MB
Formato
Adobe PDF
|
6.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.