Cure models represent an appealing tool when analyzing default time data where two groups of companies are supposed to coexist: those which could eventually experience a default (uncured) and those which could not develop an endpoint (cured). One of their most interesting properties is the possibility to distinguish among covariates exerting their influence on the probability of belonging to the populations’ uncured fraction, from those affecting the default time distribution. This feature allows a separate analysis of the two dimensions of the default risk: whether the default can occur and when it will occur, given that it can occur. Basing our analysis on a large sample of Italian firms, the probability of being uncured is here estimated with a binary logit regression, whereas a discrete time version of a Cox’s proportional hazards approach is used to model the time distribution of defaults. The extension of the cure model as a forecasting framework is then accomplished by replacing the discrete time baseline function with an appropriate time-varying system level covariate, able to capture the underlying macroeconomic cycle. We propose a holdout sample procedure to test the classification power of the cure model. When compared with a single-period logit regression and a standard duration analysis approach, the cure model has proven to be more reliable in terms of the overall predictive performance.

De Leonardis, D., Rocci, R. (2013). Default risk analysis via a discrete-time cure rate model. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 30, 529-543.

Default risk analysis via a discrete-time cure rate model

ROCCI, ROBERTO
2013-01-01

Abstract

Cure models represent an appealing tool when analyzing default time data where two groups of companies are supposed to coexist: those which could eventually experience a default (uncured) and those which could not develop an endpoint (cured). One of their most interesting properties is the possibility to distinguish among covariates exerting their influence on the probability of belonging to the populations’ uncured fraction, from those affecting the default time distribution. This feature allows a separate analysis of the two dimensions of the default risk: whether the default can occur and when it will occur, given that it can occur. Basing our analysis on a large sample of Italian firms, the probability of being uncured is here estimated with a binary logit regression, whereas a discrete time version of a Cox’s proportional hazards approach is used to model the time distribution of defaults. The extension of the cure model as a forecasting framework is then accomplished by replacing the discrete time baseline function with an appropriate time-varying system level covariate, able to capture the underlying macroeconomic cycle. We propose a holdout sample procedure to test the classification power of the cure model. When compared with a single-period logit regression and a standard duration analysis approach, the cure model has proven to be more reliable in terms of the overall predictive performance.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore SECS-S/01 - STATISTICA
English
Con Impact Factor ISI
default risk; discrete time survival analysis; cure models
De Leonardis, D., Rocci, R. (2013). Default risk analysis via a discrete-time cure rate model. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 30, 529-543.
De Leonardis, D; Rocci, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2013 DeLeonardisRocci.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 144.31 kB
Formato Adobe PDF
144.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/129387
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact