This paper describes a particular design of a thermionic electron gun employable in Sub-millimetric waves vacuum tubes and for spatial environment applications. Design strategies are proposed by providing closed formulas and dimensioning techniques. A multiphysics approach has been employed for studying the effect of multiple physics influencing factors due to the cathode heating over the beam dynamics. Operating temperature, thermal expansion displacements and external environment effects have been considered. This paper would give the academic knowledge for developing electron sources with narrow dimension providing an analytical approach followed by numerical modeling technique for virtual prototypes, which foresee the global behavior of this kind of devices while operating. For this aim, several strategies have been adopted and described in detail to obtain a simple model, which shows clearly these effects and their relations. The proposed modeling can allow for the correct operation in this range of narrow dimensions, where the operation is extremely critical while the cathode heating effects are present. According to this study, the appropriate materials and geometrical shapes for the beam-forming electrodes can be chosen.

Leggieri, A., Passi, D., DI PAOLO, F., Spataro, B., Dyunin, E. (2015). Design of a sub-millimetric electron gun with analysis of thermomechanical effects on beam dynamics. VACUUM, 122(Part A), 103-116 [10.1016/j.vacuum.2015.09.013].

Design of a sub-millimetric electron gun with analysis of thermomechanical effects on beam dynamics

DI PAOLO, FRANCO;
2015-11-01

Abstract

This paper describes a particular design of a thermionic electron gun employable in Sub-millimetric waves vacuum tubes and for spatial environment applications. Design strategies are proposed by providing closed formulas and dimensioning techniques. A multiphysics approach has been employed for studying the effect of multiple physics influencing factors due to the cathode heating over the beam dynamics. Operating temperature, thermal expansion displacements and external environment effects have been considered. This paper would give the academic knowledge for developing electron sources with narrow dimension providing an analytical approach followed by numerical modeling technique for virtual prototypes, which foresee the global behavior of this kind of devices while operating. For this aim, several strategies have been adopted and described in detail to obtain a simple model, which shows clearly these effects and their relations. The proposed modeling can allow for the correct operation in this range of narrow dimensions, where the operation is extremely critical while the cathode heating effects are present. According to this study, the appropriate materials and geometrical shapes for the beam-forming electrodes can be chosen.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - Elettronica
English
Charged particle beams; Thermoelectronic phenomena; Vacuum microelectronics; Computer modeling; Simulation
http://www.sciencedirect.com/science/article/pii/S0042207X15300658
Leggieri, A., Passi, D., DI PAOLO, F., Spataro, B., Dyunin, E. (2015). Design of a sub-millimetric electron gun with analysis of thermomechanical effects on beam dynamics. VACUUM, 122(Part A), 103-116 [10.1016/j.vacuum.2015.09.013].
Leggieri, A; Passi, D; DI PAOLO, F; Spataro, B; Dyunin, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1- VACUUM - GUN.pdf

accesso solo dalla rete interna

Licenza: Non specificato
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/127074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact