The ability of bacteria to colonize specific environments relies on their ability to obtain adequate supplies of the nutrients that are indispensable for their growth. Of particular relevance for human and animal health is to understand how bacterial pathogens face the problem of nutrient limitation in the infected host, in which several essential elements are not freely available for infectious microorganisms. In this respect, the recruitment of transition metals is a particularly challenging problem for bacterial pathogens, as these elements are usually present in forms that are not easily available for infectious microorganisms. For this reason, the sophisticated strategies adopted by pathogens to obtain iron have been the focus of intense investigations since a long time. Although the relevance of other metals in the host-pathogen interaction is usually considered as less important with respect to iron, evidences are accumulating that also the mechanisms ensuring the efficient uptake of zinc plays a critical role during bacterial infections. To investigate the relevance of zinc in host-pathogen interactions, we have constructed Salmonella enterica mutant strains in which the znuA gene, which encodes the periplasmic component of the ZnuABC high-affinity zinc transporter, was deleted. This mutation does not alter the ability of Salmonella to grow in rich media but drastically reduces its ability to multiply in media containing low levels of zinc (minimal medium) or in rich medium supplemented whit chelating agents (EDTA or TPEN). In agreement with this phenotype, ZnuA accumulates only in bacteria cultivated in environments poor in zinc. In spite of the nearly millimolar intracellular concentration of zinc, we have found that znuA is highly expressed in intracellular salmonellae recovered either from cultivated cells or from the spleens of infected mice. We have also observed that znuA mutants are impaired in their ability to grow in Caco-2 epithelial cells and that bacteria starved for zinc display a decreased ability to multiply in phagocytes. Moreover, a dramatic reduction in the pathogenicity of the znuA mutants was observed in Salmonella-susceptible (BALB/c) or Salmonella resistant (DBA-2) mice infected intraperitoneally or orally. To better understand bacterial responses to zinc deficiency, we have also investigated the role of ZinT, a periplasmic protein with a putative role in zinc homeostasis, in Salmonella. We have found that zinT expression is regulated by Zur and parallels that of ZnuA and ZnuB. Despite ZinT contributes to Salmonella growth in media poor of zinc, disruption of zinT does not significantly affect virulence in mice. The role of ZinT became clear using strains expressing a mutated form of ZnuA lacking a characteristic histidine-rich domain. In fact, Salmonella strains producing this modified form of ZnuA exhibited a ZinT-dependent capability to import zinc either in vitro or in infected mice, suggesting that ZinT and the histidine-rich region of ZnuA have redundant function. The hypothesis that ZinT and ZnuA cooperate in the process of zinc recruitment is supported by the observation that they form a stable binary complex in vitro. Although, the presence of ZinT is not strictly required to ensure the functionality of the ZnuABC transporter, our data suggest that ZinT facilitates metal acquisition during severe zinc shortage.
La capacità dei batteri di colonizzare particolari ambienti è legata alla loro capacità di sopperire alla mancanza di nutrienti essenziali per la loro crescita. Di particolare rilevanza per la salute umana e animale è capire come i batteri patogeni affrontano il problema della limitazione dei nutrienti che incontrano nell'organismo infettato, in cui diversi elementi essenziali per la sopravvivenza batterica non sono facilmente reperibili. Particolarmente difficile per i batteri patogeni è reperire metalli di transizione, in quanto questi elementi sono di solito presenti in forme che non sono facilmente disponibili per i microrganismi. Per questo motivo, le sofisticate strategie adottate dagli agenti patogeni per ottenere ferro sono state da tempo oggetto di intense indagini. Sebbene la rilevanza di altri metalli nell'interazione ospite-patogeno è generalmente considerata meno importante rispetto al ferro, negli ultimi anni è stato osservato che anche i meccanismi che garantiscono l'efficiente assorbimento dello zinco svolgono un ruolo critico durante le infezioni batteriche. Per studiare la rilevanza dello zinco nelle interazioni ospite-patogeno, abbiamo costruito un ceppo mutante di Salmonella enterica, in cui il gene znuA, che codifica per la componente periplasmatica del trasportatore ZnuABC, è stato deleto. Questa mutazione non altera la capacità di Salmonella di crescere in un terreno ricco, ma riduce drasticamente la sua capacità di moltiplicarsi in terreni contenenti bassi livelli di zinco (terreno minimo) o in un terreno ricco supplementato con agenti chelanti (EDTA o TPEN). In accordo con questo fenotipo, abbiamo osservato che ZnuA si accumula solo nei batteri coltivati in terreni poveri di zinco. Nonostante la concentrazione intracellulare di zinco sia dell’ordine del millimolare, abbiamo scoperto che znuA è espresso in Salmonellae recuperate sia da cellule coltivate che dalla milza di topi infetti. Abbiamo inoltre osservato che i ceppi mutanti nel gene znuA hanno una ridotta capacità di crescere nelle cellule epiteliali Caco-2 e di moltiplicarsi in fagociti infettati con batteri precoltivati in terreni poveri di zinco. Inoltre, una drastica riduzione della patogenicità del ceppo mutante znuA è stata osservata sia in topi suscettibili ad infezione da parte di Salmonella (BALB / c) o resistenti (DBA-2), infettati sia per via intraperitoneale che orale. Per meglio comprendere le risposte dei batteri alla carenza di zinco, abbiamo inoltre analizzato il ruolo di ZinT, una proteina periplasmatica con un ipotetico ruolo nell’omeostasi dello zinco, in Salmonella. Abbiamo scoperto che l’espressione di zinT è regolata da Zur così come avviene per ZnuA e ZnuB. Nonostante ZinT contribuisca alla crescita di Salmonella in terreni poveri di zinco, la delezione di zinT non influenza in modo significativo la virulenza nei topi. Il ruolo di ZinT è stato chiarificato utilizzando ceppi che esprimono una forma mutata di ZnuA priva di una caratteristica ansa ricca in residui di istidina. Questi ceppi hanno mostrato una capacità ZinT-dipendente di importare zinco sia in vitro che nei topi infettati, suggerendo che ZinT e la regione ricca in istidine di ZnuA hanno funzioni ridondanti. L'ipotesi che ZinT e ZnuA cooperino nel processo di assunzione dello zinco è supportato dall'osservazione che esse formano un complesso in vitro. Anche se, la presenza di ZinT non è strettamente necessaria per garantire la funzionalità del trasportatore ZnuABC, i nostri dati suggeriscono che ZinT facilita l'acquisizione del metallo durante condizioni di grave carenza di zinco.
Petrarca, P. (2010). Characterization of the Salmonella enterica zinc import apparatus and of its relevance in the host-pathogen interaction [10.58015/petrarca-patrizia_phd2010-04-29].
Characterization of the Salmonella enterica zinc import apparatus and of its relevance in the host-pathogen interaction
PETRARCA, PATRIZIA
2010-04-29
Abstract
The ability of bacteria to colonize specific environments relies on their ability to obtain adequate supplies of the nutrients that are indispensable for their growth. Of particular relevance for human and animal health is to understand how bacterial pathogens face the problem of nutrient limitation in the infected host, in which several essential elements are not freely available for infectious microorganisms. In this respect, the recruitment of transition metals is a particularly challenging problem for bacterial pathogens, as these elements are usually present in forms that are not easily available for infectious microorganisms. For this reason, the sophisticated strategies adopted by pathogens to obtain iron have been the focus of intense investigations since a long time. Although the relevance of other metals in the host-pathogen interaction is usually considered as less important with respect to iron, evidences are accumulating that also the mechanisms ensuring the efficient uptake of zinc plays a critical role during bacterial infections. To investigate the relevance of zinc in host-pathogen interactions, we have constructed Salmonella enterica mutant strains in which the znuA gene, which encodes the periplasmic component of the ZnuABC high-affinity zinc transporter, was deleted. This mutation does not alter the ability of Salmonella to grow in rich media but drastically reduces its ability to multiply in media containing low levels of zinc (minimal medium) or in rich medium supplemented whit chelating agents (EDTA or TPEN). In agreement with this phenotype, ZnuA accumulates only in bacteria cultivated in environments poor in zinc. In spite of the nearly millimolar intracellular concentration of zinc, we have found that znuA is highly expressed in intracellular salmonellae recovered either from cultivated cells or from the spleens of infected mice. We have also observed that znuA mutants are impaired in their ability to grow in Caco-2 epithelial cells and that bacteria starved for zinc display a decreased ability to multiply in phagocytes. Moreover, a dramatic reduction in the pathogenicity of the znuA mutants was observed in Salmonella-susceptible (BALB/c) or Salmonella resistant (DBA-2) mice infected intraperitoneally or orally. To better understand bacterial responses to zinc deficiency, we have also investigated the role of ZinT, a periplasmic protein with a putative role in zinc homeostasis, in Salmonella. We have found that zinT expression is regulated by Zur and parallels that of ZnuA and ZnuB. Despite ZinT contributes to Salmonella growth in media poor of zinc, disruption of zinT does not significantly affect virulence in mice. The role of ZinT became clear using strains expressing a mutated form of ZnuA lacking a characteristic histidine-rich domain. In fact, Salmonella strains producing this modified form of ZnuA exhibited a ZinT-dependent capability to import zinc either in vitro or in infected mice, suggesting that ZinT and the histidine-rich region of ZnuA have redundant function. The hypothesis that ZinT and ZnuA cooperate in the process of zinc recruitment is supported by the observation that they form a stable binary complex in vitro. Although, the presence of ZinT is not strictly required to ensure the functionality of the ZnuABC transporter, our data suggest that ZinT facilitates metal acquisition during severe zinc shortage.File | Dimensione | Formato | |
---|---|---|---|
Patrizia Petrarca.pdf
accesso aperto
Licenza:
Copyright degli autori
Dimensione
8.64 MB
Formato
Adobe PDF
|
8.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.