A flat triangular element for the nonlinear analysis of thin shells is presented. The formulation relies on (i) a polar decomposition based corotational framework and (ii) a core-element kinematic description adopting the multiplicative superposition of membrane and bending actions. The resulting element is a refined yet simple three-node displacement-based triangle accounting for thickness extensibility and initial shell curvature, and equipped with a fully consistent tangent stiffness. Numerical tests involving shell structures made of rubber-like materials or fibred biological tissues show the effectiveness of the proposed element and its suitability to problems characterized by large displacements, large rotations, large membrane strains and bending. A Matlab toolkit implementing the present formulation is provided as supplementary material.
Caselli, F., Bisegna, P. (2014). A corotational flat triangular element for large strain analysis of thin shells with application to soft biological tissues. COMPUTATIONAL MECHANICS, 54(3), 847-864 [10.1007/s00466-014-1038-9].
A corotational flat triangular element for large strain analysis of thin shells with application to soft biological tissues
CASELLI, FEDERICA;BISEGNA, PAOLO
2014-01-01
Abstract
A flat triangular element for the nonlinear analysis of thin shells is presented. The formulation relies on (i) a polar decomposition based corotational framework and (ii) a core-element kinematic description adopting the multiplicative superposition of membrane and bending actions. The resulting element is a refined yet simple three-node displacement-based triangle accounting for thickness extensibility and initial shell curvature, and equipped with a fully consistent tangent stiffness. Numerical tests involving shell structures made of rubber-like materials or fibred biological tissues show the effectiveness of the proposed element and its suitability to problems characterized by large displacements, large rotations, large membrane strains and bending. A Matlab toolkit implementing the present formulation is provided as supplementary material.File | Dimensione | Formato | |
---|---|---|---|
Corot_CM.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.