Motivated by the study of selfdual vortices in gauge field theory, we consider a class of Mean Field equations of Liouville-type on compact surfaces involving singular data assigned by Dirac measures supported at finitely many points (the so called vortex points). According to the applications, we need to describe the blow-up behavior of solution-sequences which concentrate exactly at the given vortex points. We provide accurate pointwise estimates for the profile of the bubbling sequences as well as "sup + inf" estimates for solutions. Those results extend previous work of Li [Li, Y. Y. (1999). Harnack type inequality: The method of moving planes. Comm. Math. Phys. 200:421–444] and Brezis et al. [Brezis, H., Li, Y. Shafrir, I. (1993). A sup + inf inequality for some nonlinear elliptic equations involving the exponential nonlinearities. J. Funct. Anal. 115: 344–358] relative to the "regular" case, namely in absence of singular sources.
Bartolucci, D., Chen, C., Lin, C., Tarantello, G. (2004). Profile of Blow-up Solutions to Mean Field Equations with Singular Data. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 29, 1241-1265.
Profile of Blow-up Solutions to Mean Field Equations with Singular Data
BARTOLUCCI, DANIELE;TARANTELLO, GABRIELLA
2004-01-01
Abstract
Motivated by the study of selfdual vortices in gauge field theory, we consider a class of Mean Field equations of Liouville-type on compact surfaces involving singular data assigned by Dirac measures supported at finitely many points (the so called vortex points). According to the applications, we need to describe the blow-up behavior of solution-sequences which concentrate exactly at the given vortex points. We provide accurate pointwise estimates for the profile of the bubbling sequences as well as "sup + inf" estimates for solutions. Those results extend previous work of Li [Li, Y. Y. (1999). Harnack type inequality: The method of moving planes. Comm. Math. Phys. 200:421–444] and Brezis et al. [Brezis, H., Li, Y. Shafrir, I. (1993). A sup + inf inequality for some nonlinear elliptic equations involving the exponential nonlinearities. J. Funct. Anal. 115: 344–358] relative to the "regular" case, namely in absence of singular sources.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.