Artificial sensor systems, similarly to biological olfaction, are conceived as arrays of partially selective chemical sensors. Significant issues of natural olfaction such as the large number of olfactory neurons, the convergence of receptors on a glomerular layer, and the active role of the olfactory mucosa still needs to be implemented to further increase the similitude between natural and artificial systems. Straightforward techniques for chemical sensing are those based on the modification of optical properties such as absorbance and luminescence. Among the devices available to measure the optical features, the Computer Screen Photo-Assisted Technique (CSPT), being based on an image detector, allows the simultaneous measurement of optical properties of large ensembles of individual sensors. The CSPT provides a tool to develop sensing systems where the resemblance between nature and technology may be enhanced. In this thesis novel strategies for the design of sensing materials for optical sensors are proposed to improve the detection capabilities of image sensors. A sensing layer usually consists of an optically responsive molecule, that changes its absorption spectrum in response to analytes, and an inert and gas permeable polymeric support that allows a more efficient exposure of the sensing molecule to vapours. Herein, the attention was focused on both the standard components of a sensing layer with the aim to control features such as sensitivity and selectivity. On the one hand, nano-structured arrangements were investigated to enhance the performances of sensing molecules. A tubular self assembled formation of two different porphyrins was demonstrated to produce an enhancement of performances with respect to the individual units. On the other hand, the effect of matrices made of different polymers to disperse a single indicator was investigated. An array of several polymers containing the same dye was demonstrated to discriminate among a variety of vapours, revealing that the different partitioning of polymers contributes to the analytes recognition. Also the behaviour of gas through a polymeric phase is a fundamental pillar in analytical chemistry, as well as in the biological olfactory mucosa. The diffusion of vapours in uniformly distributed layers of porphyrin-functionalized polymers was studied. This platform is able to separate and detect volatile compounds introducing the olfactory mucosa properties in an artificial sensor system. This bio-mimetic approach is then wished to prompt the development of novel principles to be incorporated in optical sensors. All these findings were combined in order to design an artificial olfaction platform characterized by further biological olfaction features such as a large number of receptors, the convergence into a glomerular layer and the emergence of a spatio-temporal response patterns.
I sistemi olfattivi artificiali, in analogia con l’olfatto biologico, sono costituiti da array di sensori chimici parzialmente selettivi. Tuttavia, alcune importanti caratteristiche dei sistemi olfattivi biologici, come l’elevato numero di recettori, la convergenza dei neuroni nei glomeruli ed il ruolo attivo della mucosa devono ancora essere implementati i sistemi artificiali per incrementarne le similitudini. Una tecniche di trasduzione semplice e diretta per sensori chimici è basata sulla modifica delle proprietà ottiche come l’assorbanza e la luminescenza. Tra i vari dispositivi disponibili per la misura di tali proprietà, la tecnica CSPT (Computer Screen Photo-assisted Technique), basata su un sensore di immagine, permette la misura simultanea delle proprietà ottiche di un enorme numero di sensori. Il CSPT fornisce un metodo per lo sviluppo di sistemi sensoriali per i quali la similitudine tra natura e tecnologia può essere potenziata. In questa tesi sono state proposte alcune strategie innovative per la realizzazione del materiale sensibile per sensori ottici, con lo scopo di migliorarne le prestazioni nella rilevazione dei composti volatili. Usualmente, il film sensibile è costituito da molecole otticamente sensibili, le quali modificano il proprio spettro di assorbimento in risposta all’interazione con gli analiti, e da una matrice polimerica inerte e gas-permeabile che favorisce l’esposizione delle molecole sensibili ai vapori. Nel corso di questa tesi, l’attenzione si è rivolta ad entrambi i componenti del film sensibile, con lo scopo di controllare e migliorare proprietà quali la sensibilità e la selettività. Per agire sul primo aspetto, le molecole sensibili, è stato proposto l’uso di aggregati di molecole in materiale nano-strutturato per incrementare le prestazioni. E’ stato dimostrato che nano-aggregati di porfirine di forma tubulare conferiscono un’aumentata sensibilità al film sensibile rispetto ai singoli costituenti. Per quanto riguarda il secondo aspetto, la matrice polimerica, è stato dapprima studiato l’effetto di differenti polimeri nei quali è stato disperso un unico indicatore colorimetrico. Si è dimostrato che un array di diversi polimeri può essere utilizzato per discriminare tra vari composti volatili grazie al differente partizionamento che contribuisce alla discriminazione degli analiti. Anche la diffusione del gas attraverso una fase polimerica è cruciale nelle tecniche di chimica analitica, così come nella mucosa dell’epitelio olfattivo biologico. Pertanto, si è studiata la diffusione di diversi gas e vapori attraverso uno strato uniforme di polimero funzionalizzato con una singola porfirina. In tal modo è stato possibile separare e discriminare i composti volatili, introducendo le proprietà della mucosa biologica in un sistema olfattivo artificiale. È auspicabile che tale approccio “bio-mimetico” possa essere introdotto nello sviluppo di nuovi sensori chimici. Infine, tali osservazioni sperimentali sono state combinate per sviluppare una piattaforma di olfatto artificiale caratterizzata da ulteriori proprietà dell’olfatto biologico, tra cui l’elevato numero di recettori, la convergenza nello strato glomerulare e l’insorgere di pattern spazio-temporali nella risposta dei sensori.
Dini, F. (2010). Chemical sensors based on image detectors [10.58015/dini-francesca_phd2010-04-01].
Chemical sensors based on image detectors
DINI, FRANCESCA
2010-04-01
Abstract
Artificial sensor systems, similarly to biological olfaction, are conceived as arrays of partially selective chemical sensors. Significant issues of natural olfaction such as the large number of olfactory neurons, the convergence of receptors on a glomerular layer, and the active role of the olfactory mucosa still needs to be implemented to further increase the similitude between natural and artificial systems. Straightforward techniques for chemical sensing are those based on the modification of optical properties such as absorbance and luminescence. Among the devices available to measure the optical features, the Computer Screen Photo-Assisted Technique (CSPT), being based on an image detector, allows the simultaneous measurement of optical properties of large ensembles of individual sensors. The CSPT provides a tool to develop sensing systems where the resemblance between nature and technology may be enhanced. In this thesis novel strategies for the design of sensing materials for optical sensors are proposed to improve the detection capabilities of image sensors. A sensing layer usually consists of an optically responsive molecule, that changes its absorption spectrum in response to analytes, and an inert and gas permeable polymeric support that allows a more efficient exposure of the sensing molecule to vapours. Herein, the attention was focused on both the standard components of a sensing layer with the aim to control features such as sensitivity and selectivity. On the one hand, nano-structured arrangements were investigated to enhance the performances of sensing molecules. A tubular self assembled formation of two different porphyrins was demonstrated to produce an enhancement of performances with respect to the individual units. On the other hand, the effect of matrices made of different polymers to disperse a single indicator was investigated. An array of several polymers containing the same dye was demonstrated to discriminate among a variety of vapours, revealing that the different partitioning of polymers contributes to the analytes recognition. Also the behaviour of gas through a polymeric phase is a fundamental pillar in analytical chemistry, as well as in the biological olfactory mucosa. The diffusion of vapours in uniformly distributed layers of porphyrin-functionalized polymers was studied. This platform is able to separate and detect volatile compounds introducing the olfactory mucosa properties in an artificial sensor system. This bio-mimetic approach is then wished to prompt the development of novel principles to be incorporated in optical sensors. All these findings were combined in order to design an artificial olfaction platform characterized by further biological olfaction features such as a large number of receptors, the convergence into a glomerular layer and the emergence of a spatio-temporal response patterns.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Dini.pdf
accesso aperto
Licenza:
Copyright degli autori
Dimensione
8.96 MB
Formato
Adobe PDF
|
8.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.