Actually, most of the electric energy is being produced by fossil fuels and great is the search for viable alternatives. The most appealing and promising technology is photovoltaics. It will become truly mainstream when its cost will be comparable to other energy sources. One way is to significantly enhance device efficiencies, for example by increasing the number of band gaps in multijunction solar cells or by favoring charge separation in the devices. This can be done by using cells based on nanostructured semiconductors. In this paper, we will present ab-initio results of the structural, electronic and optical properties of (1) silicon and germanium nanoparticles embedded in wide band gap materials and (2) mixed silicon-germanium nanowires. We show that theory can help in understanding the microscopic processes important for devices performances. In particular, we calculated for embedded Si and Ge nanoparticles the dependence of the absorption threshold on size and oxidation, the role of crystallinity and, in some cases, the recombination rates, and we demonstrated that in the case of mixed nanowires, those with a clear interface between Si and Ge show not only a reduced quantum confinement effect but display also a natural geometrical separation between electron and hole.

Ossicini, S., Amato, M., Guerra, R., Palummo, M., Pulci, O. (2010). Silicon and germanium nanostructures for photovoltaic applications: ab-initio results. NANOSCALE RESEARCH LETTERS, 5, 1637-1649 [10.1007/s11671-010-9688-9].

Silicon and germanium nanostructures for photovoltaic applications: ab-initio results

PALUMMO, MAURIZIA;PULCI, OLIVIA
2010-01-01

Abstract

Actually, most of the electric energy is being produced by fossil fuels and great is the search for viable alternatives. The most appealing and promising technology is photovoltaics. It will become truly mainstream when its cost will be comparable to other energy sources. One way is to significantly enhance device efficiencies, for example by increasing the number of band gaps in multijunction solar cells or by favoring charge separation in the devices. This can be done by using cells based on nanostructured semiconductors. In this paper, we will present ab-initio results of the structural, electronic and optical properties of (1) silicon and germanium nanoparticles embedded in wide band gap materials and (2) mixed silicon-germanium nanowires. We show that theory can help in understanding the microscopic processes important for devices performances. In particular, we calculated for embedded Si and Ge nanoparticles the dependence of the absorption threshold on size and oxidation, the role of crystallinity and, in some cases, the recombination rates, and we demonstrated that in the case of mixed nanowires, those with a clear interface between Si and Ge show not only a reduced quantum confinement effect but display also a natural geometrical separation between electron and hole.
2010
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/03 - FISICA DELLA MATERIA
English
Con Impact Factor ISI
Silicon; Germanium; Nanocrystals; Nanowires; Nanophotonics; Photovoltaics
Ossicini, S., Amato, M., Guerra, R., Palummo, M., Pulci, O. (2010). Silicon and germanium nanostructures for photovoltaic applications: ab-initio results. NANOSCALE RESEARCH LETTERS, 5, 1637-1649 [10.1007/s11671-010-9688-9].
Ossicini, S; Amato, M; Guerra, R; Palummo, M; Pulci, O
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
nanoscale_published.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 758.41 kB
Formato Adobe PDF
758.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/12407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact