We prove that, on a complete hyperbolic domain $Dsubset mathbb{C}^q$, any Loewner PDE associated with a Herglotz vector field of the form $H(z,t)=Lambda(z)+O(|z|^2)$, where the eigenvalues of $Lambda$ have strictly negative real part, admits a solution given by a family of univalent mappings $(f_tcolon D o mathbb{C}^q)$ which satisfies $cup_{tgeq 0}f_t(D)=mathbb{C}^q$. If no real resonance occurs among the eigenvalues of $Lambda$, then the family $(e^{Lambda t}circ f_t)$ is uniformly bounded in a neighborhood of the origin. We also give a generalization of Pommerenke's univalence criterion on complete hyperbolic domains.
Arosio, L. (2013). Loewner equations on complete hyperbolic domains. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 398(2), 609-621 [10.1016/j.jmaa.2012.09.018].
Loewner equations on complete hyperbolic domains
AROSIO, LEANDRO
2013-01-01
Abstract
We prove that, on a complete hyperbolic domain $Dsubset mathbb{C}^q$, any Loewner PDE associated with a Herglotz vector field of the form $H(z,t)=Lambda(z)+O(|z|^2)$, where the eigenvalues of $Lambda$ have strictly negative real part, admits a solution given by a family of univalent mappings $(f_tcolon D o mathbb{C}^q)$ which satisfies $cup_{tgeq 0}f_t(D)=mathbb{C}^q$. If no real resonance occurs among the eigenvalues of $Lambda$, then the family $(e^{Lambda t}circ f_t)$ is uniformly bounded in a neighborhood of the origin. We also give a generalization of Pommerenke's univalence criterion on complete hyperbolic domains.File | Dimensione | Formato | |
---|---|---|---|
Loewner equations on complete hyperbolic domains.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
278.11 kB
Formato
Adobe PDF
|
278.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.