We prove that, on a complete hyperbolic domain $Dsubset mathbb{C}^q$, any Loewner PDE associated with a Herglotz vector field of the form $H(z,t)=Lambda(z)+O(|z|^2)$, where the eigenvalues of $Lambda$ have strictly negative real part, admits a solution given by a family of univalent mappings $(f_tcolon D o mathbb{C}^q)$ which satisfies $cup_{tgeq 0}f_t(D)=mathbb{C}^q$. If no real resonance occurs among the eigenvalues of $Lambda$, then the family $(e^{Lambda t}circ f_t)$ is uniformly bounded in a neighborhood of the origin. We also give a generalization of Pommerenke's univalence criterion on complete hyperbolic domains.

Arosio, L. (2013). Loewner equations on complete hyperbolic domains. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 398(2), 609-621 [10.1016/j.jmaa.2012.09.018].

Loewner equations on complete hyperbolic domains

AROSIO, LEANDRO
2013-01-01

Abstract

We prove that, on a complete hyperbolic domain $Dsubset mathbb{C}^q$, any Loewner PDE associated with a Herglotz vector field of the form $H(z,t)=Lambda(z)+O(|z|^2)$, where the eigenvalues of $Lambda$ have strictly negative real part, admits a solution given by a family of univalent mappings $(f_tcolon D o mathbb{C}^q)$ which satisfies $cup_{tgeq 0}f_t(D)=mathbb{C}^q$. If no real resonance occurs among the eigenvalues of $Lambda$, then the family $(e^{Lambda t}circ f_t)$ is uniformly bounded in a neighborhood of the origin. We also give a generalization of Pommerenke's univalence criterion on complete hyperbolic domains.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Arosio, L. (2013). Loewner equations on complete hyperbolic domains. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 398(2), 609-621 [10.1016/j.jmaa.2012.09.018].
Arosio, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Loewner equations on complete hyperbolic domains.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 278.11 kB
Formato Adobe PDF
278.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/123282
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact