Hyadd4-G is a derivatized hyaluronic acid having 1÷3% of the carboxyl groups grafted with a hexadecylic amide side-chains. The introduction of a hexadecyl side chain onto hyaluronic acid (HA) chains yields a polysaccharide with new properties, capable of forming physical hydrogels, stable at very low polymer concentrations, whereas native HA forms viscous solutions at ten times higher concentrations. We addressed the structural and dynamic behavior of Hyadd4-G hydrogels at different time and length scales. Dynamic structural factor, f(Q,t), obtained by DLS, was used to extract the microscopic characteristic times and pore size of the network. Fluorescence recovery after photobleaching methodology, FRAP, was used to measure diffusion coefficients of fluorescent probes with different size. The hydrodynamic coil dimensions of dextrans evidencing a sieving effect of the hydrogels by FRAP experiments can be compared with the mesh size, δ, of Hyadd4-G hydrogels studied by DLS. Rheology measurements in the linear viscoelastic regime show that Hyadd4-G is a soft viscoelastic gel. Rheological measurements showed an unusual self-healing mechanism (structure recovery) after destruction of the gel network in a shear flow and the injectability of the hydrogel is supported by a pronounced shear-thinning behavior under nonlinear deformations. Neutron scattering techniques can provide information about the microstructure and the diffusional properties of water within the pores of the network. Characterization of Hyadd4-G showed that the driving force for its gel-like behavior is the occurrence of hydrophobic interactions involving hydrophobic side-chains stabilizing a 3D-network with nano-sized architecture, despite the low degree of substitution. This picture provides the necessary background to assess Hyadd4-G as one of the potential new hydrogel systems suitable for treatment of osteoarticular diseases. Xanthan and konjac glucomannan pair provides one of the most studied synergistic hydrogels. The junction zones stabilizing the 3D structure of this gel are present as macromolecular complexes in solution formed by the partially depolymerised polysaccharidic chains. The non-covalent interactions stabilizing the structure of the polysaccharidic complex cause the melting of the ordered structure of the complex in the solution and of the hydrogels. Introduction of chemical cross-links in the 3D structure of the synergistic hydrogel removes this behaviour, adding new features to the swelling and to the viscoelastic properties of the cured hydrogel. The use of epichlorohydrin as low molecular weight cross-linker does not impact on the viability of NIH 3T3 fibroblasts.
Hyadd4-G è un derivato dell’acido ialuronico avente l’ 1÷3% di gruppi carbossilici legati a catene laterali di esadecilammina. L’introduzione di catene laterali esadeciliche sull’acido ialuronico (HA) porta alla formazione di un polisaccaride con nuove proprietà in grado di formare idrogel fisici, stabili a concentrazioni di polimero molto basse, mentre l’ HA nativo forma soluzioni viscose anche a concentrazioni dieci volte maggiori. Il comportamento strutturale e dinamico dell’idrogel Hyadd4-G riguarda diverse scale temporali e spaziali. Il fattore dinamico di struttura, f(Q,t), ottenuto con misure di DLS, è stato usato per ricavare i tempi microscopici caratteristici e le dimensioni della maglia del network. La metodologia del recupero di fluorescenza dopo photobleaching, FRAP, è stata usata per misurare i coefficienti di diffusione di sonde fluorescenti con diverse dimensioni. Le dimensioni idrodinamiche delle sonde, evidenziando un effetto di setaccio degli idrogel con gli esperimenti di FRAP, possono essere comparate con le dimensioni di maglia, δ, degli idrogel Hyadd4-G studiati con DLS. Misure di reologia nel regime viscoelastico lineare hanno mostrato che Hyadd4-G è un gel “soffice” viscoelastico. Tali misure hanno mostrato inoltre un particolare meccanismo di ricostituzione (“recupero di struttura”) dopo la distruzione del network del gel con misure in flusso e l’iniettabilità dell’idrogel è supportata da un pronunciato comportamento di “shear-thinning” sotto una deformazione non-lineare. La tecnica dello scattering dei neutroni ha fornito informazioni sulla microstruttura e sulle proprietà di diffusione dell’acqua nel network. La caratterizzazione dello Hyadd4-G ha mostrato che la formazione del gel è dovuta all’interazione tra le catene laterali idrofobiche che stabilizzano il network 3D con un’architettura di dimensioni nanoscopiche, nonostante il basso grado di sostituzione. Questa rappresentazione fornisce il necessario background per considerare Hyadd4-G come un potenziale nuovo idrogel utilizzabile per trattamenti di malattie osteoarticolari. Lo xantano e il konjac glucomannano accoppiati forniscono uno dei sistemi di idrogel sinergici maggiormente studiati. Le zone di giunzione che stabilizzano una struttura 3D sono rappresentate da complessi macromolecolari in soluzione formati da catene polisaccaridiche parzialmente depolimerizzate. Le interazioni non-covalnti che stabilizzano la struttura del complesso polisaccaridico causano la distruzione di una struttura ordinata del complesso in soluzione e dell’idrogel. L’introduzione di legami chimici nella struttura 3D dell’idrogel sinergico rimuove questo comportamento, aggiungendo nuove caratteristiche al rigonfiamento e alle proprietà viscoelastiche dell’idrogel. L’utilizzo di epicloridrina come agente reticolante a basso peso molecolare non influisce sulla vitalità di fibroblasti NIH 3T3.
Finelli, I. (2010). Studio sulla struttura e sul comportamento dinamico di idrogel polisaccaridici per la formulazione di nuovi dispositivi biomedicali.
Studio sulla struttura e sul comportamento dinamico di idrogel polisaccaridici per la formulazione di nuovi dispositivi biomedicali
FINELLI, IVANA
2010-03-22
Abstract
Hyadd4-G is a derivatized hyaluronic acid having 1÷3% of the carboxyl groups grafted with a hexadecylic amide side-chains. The introduction of a hexadecyl side chain onto hyaluronic acid (HA) chains yields a polysaccharide with new properties, capable of forming physical hydrogels, stable at very low polymer concentrations, whereas native HA forms viscous solutions at ten times higher concentrations. We addressed the structural and dynamic behavior of Hyadd4-G hydrogels at different time and length scales. Dynamic structural factor, f(Q,t), obtained by DLS, was used to extract the microscopic characteristic times and pore size of the network. Fluorescence recovery after photobleaching methodology, FRAP, was used to measure diffusion coefficients of fluorescent probes with different size. The hydrodynamic coil dimensions of dextrans evidencing a sieving effect of the hydrogels by FRAP experiments can be compared with the mesh size, δ, of Hyadd4-G hydrogels studied by DLS. Rheology measurements in the linear viscoelastic regime show that Hyadd4-G is a soft viscoelastic gel. Rheological measurements showed an unusual self-healing mechanism (structure recovery) after destruction of the gel network in a shear flow and the injectability of the hydrogel is supported by a pronounced shear-thinning behavior under nonlinear deformations. Neutron scattering techniques can provide information about the microstructure and the diffusional properties of water within the pores of the network. Characterization of Hyadd4-G showed that the driving force for its gel-like behavior is the occurrence of hydrophobic interactions involving hydrophobic side-chains stabilizing a 3D-network with nano-sized architecture, despite the low degree of substitution. This picture provides the necessary background to assess Hyadd4-G as one of the potential new hydrogel systems suitable for treatment of osteoarticular diseases. Xanthan and konjac glucomannan pair provides one of the most studied synergistic hydrogels. The junction zones stabilizing the 3D structure of this gel are present as macromolecular complexes in solution formed by the partially depolymerised polysaccharidic chains. The non-covalent interactions stabilizing the structure of the polysaccharidic complex cause the melting of the ordered structure of the complex in the solution and of the hydrogels. Introduction of chemical cross-links in the 3D structure of the synergistic hydrogel removes this behaviour, adding new features to the swelling and to the viscoelastic properties of the cured hydrogel. The use of epichlorohydrin as low molecular weight cross-linker does not impact on the viability of NIH 3T3 fibroblasts.File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
accesso aperto
Dimensione
4.97 MB
Formato
Adobe PDF
|
4.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.