An old result by Shearer relates the Lov´asz Local Lemma with the independent set polynomial on graphs, and consequently, as observed by Scott and Sokal, with the partition function of the hard core lattice gas on graphs. We use this connection and a recent result on the analyticity of the logarithm of the partition function of the abstract polymer gas to get an improved version of the Lov´asz Local Lemma. As applications we obtain tighter bounds on conditions for the existence of latin transversal matrices and the satisfiability of k-SAT forms.

Bissacot, R., Fernandez, R., Procacci, A., Scoppola, B. (2011). An improvement of the Lovász local lemma via cluster expansion. COMBINATORICS PROBABILITY & COMPUTING, 20(5), 707-719 [10.1017/S0963548311000253].

An improvement of the Lovász local lemma via cluster expansion

SCOPPOLA, BENEDETTO
2011-01-01

Abstract

An old result by Shearer relates the Lov´asz Local Lemma with the independent set polynomial on graphs, and consequently, as observed by Scott and Sokal, with the partition function of the hard core lattice gas on graphs. We use this connection and a recent result on the analyticity of the logarithm of the partition function of the abstract polymer gas to get an improved version of the Lov´asz Local Lemma. As applications we obtain tighter bounds on conditions for the existence of latin transversal matrices and the satisfiability of k-SAT forms.
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Bissacot, R., Fernandez, R., Procacci, A., Scoppola, B. (2011). An improvement of the Lovász local lemma via cluster expansion. COMBINATORICS PROBABILITY & COMPUTING, 20(5), 707-719 [10.1017/S0963548311000253].
Bissacot, R; Fernandez, R; Procacci, A; Scoppola, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
bfps.pdf

solo utenti autorizzati

Descrizione: articolo principale
Licenza: Copyright dell'editore
Dimensione 160.96 kB
Formato Adobe PDF
160.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/122497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 46
social impact