The classical Reed-Frost process is generalized by allowing infection probabilities to depend on current epidemic size. Such a process can be imbedded in a simple Markov process derived from i.i.d. waiting times. The final size of the epidemic has the same distribution as the time for the first crossing of a certainl inear barriero f the imbeddingp rocess.T he asymptoticd istributiono f the final size can be derived from some weak convergence results for the imbedding process. The existence of a distribution determining set of harmonic functionsf or these chain-binomiapl rocesses is also established

SCALIA TOMBA, G. (1985). Asymptotic final-size distribution for some chain-binomial processes. ADVANCES IN APPLIED PROBABILITY, 17, 477-495.

Asymptotic final-size distribution for some chain-binomial processes

SCALIA TOMBA, GIANPAOLO
1985-01-01

Abstract

The classical Reed-Frost process is generalized by allowing infection probabilities to depend on current epidemic size. Such a process can be imbedded in a simple Markov process derived from i.i.d. waiting times. The final size of the epidemic has the same distribution as the time for the first crossing of a certainl inear barriero f the imbeddingp rocess.T he asymptoticd istributiono f the final size can be derived from some weak convergence results for the imbedding process. The existence of a distribution determining set of harmonic functionsf or these chain-binomiapl rocesses is also established
1985
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
EPIDEMIC PROCESSES; EMBEDDING
SCALIA TOMBA, G. (1985). Asymptotic final-size distribution for some chain-binomial processes. ADVANCES IN APPLIED PROBABILITY, 17, 477-495.
SCALIA TOMBA, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
15_AAP ChainBinomial (1985).pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/122162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact