Let Q be a factor of type II1, λ a number in the Jones discrete series {4cosπ/m:m≥3}, and {ei} the Jones projections associated with λ. Denote by A2n and A1n the finite-dimensional von Neumann algebras generated, respectively, by {1,e2,⋯,en} and {1,e1,⋯,en}, with the corresponding traces. The author shows that, for n sufficiently large, the index of the inclusion An=(Q⊗A2n)∗A2nA1n⊂(Q⊗A2n+1)∗A2n+1A1n+1=An+1 is equal to λ (here ∗ denotes the reduced, amalgamated free product of the algebras in question). Using the random matrix model of Voiculescu, he proves that if Q is the von Neumann algebra L(F∞) of the free group with infinitely many generators, then An is isomorphic to L(F∞). The two facts together imply the existence, for any λ in the Jones discrete series, of an irreducible subfactor of L(F∞) of index λ. This constitutes the first example of a nonhyperfinite, non-Γ II1 factor such that its Jones invariant is fully computable (the existence of nonirreducible subfactors of L(F∞) for any index ≥4 is a simple consequence of known results).

Radulescu, F. (1992). Sous-facteurs de L(F∞) d'indice 4cos2π/n,n≥3. COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE, 315(1), 37-42.

Sous-facteurs de L(F∞) d'indice 4cos2π/n,n≥3

RADULESCU, FLORIN
1992

Abstract

Let Q be a factor of type II1, λ a number in the Jones discrete series {4cosπ/m:m≥3}, and {ei} the Jones projections associated with λ. Denote by A2n and A1n the finite-dimensional von Neumann algebras generated, respectively, by {1,e2,⋯,en} and {1,e1,⋯,en}, with the corresponding traces. The author shows that, for n sufficiently large, the index of the inclusion An=(Q⊗A2n)∗A2nA1n⊂(Q⊗A2n+1)∗A2n+1A1n+1=An+1 is equal to λ (here ∗ denotes the reduced, amalgamated free product of the algebras in question). Using the random matrix model of Voiculescu, he proves that if Q is the von Neumann algebra L(F∞) of the free group with infinitely many generators, then An is isomorphic to L(F∞). The two facts together imply the existence, for any λ in the Jones discrete series, of an irreducible subfactor of L(F∞) of index λ. This constitutes the first example of a nonhyperfinite, non-Γ II1 factor such that its Jones invariant is fully computable (the existence of nonirreducible subfactors of L(F∞) for any index ≥4 is a simple consequence of known results).
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
Radulescu, F. (1992). Sous-facteurs de L(F∞) d'indice 4cos2π/n,n≥3. COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE, 315(1), 37-42.
Radulescu, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
subfactorComptes_rendus_de_l'Académie_des_[...]Académie_des_bpt6k5470708m-2.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 894 kB
Formato Adobe PDF
894 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/121534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact