The induction of autophagy usually requires the activation of PIK3C3/VPS34 (phosphatidylinositol 3-kinase, catalytic subunit type 3) within a multiprotein complex that contains BECN1 (Beclin 1, autophagy related). PIK3C3 catalyzes the conversion of phosphatidylinositol into phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns3P associates with growing phagophores, which recruit components of the autophagic machinery, including the lipidated form of MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 β). Depletion of BECN1, PIK3C3 or some of their interactors suppresses the formation of MAP1LC3B(+) phagophores or autophagosomes elicited by most physiological stimuli, including saturated fatty acids. We observed that cis-unsaturated fatty acids stimulate the generation of cytosolic puncta containing lipidated MAP1LC3B as well as the autophagic turnover of long-lived proteins in the absence of PtdIns3P accumulation. In line with this notion, cis-unsaturated fatty acids require neither BECN1 nor PIK3C3 to stimulate the autophagic flux. Such a BECN1-independent autophagic response is phylogenetically conserved, manifesting in yeast, nematodes, mice and human cells. Importantly, MAP1LC3B(+) puncta elicited by cis-unsaturated fatty acids colocalize with Golgi apparatus markers. Moreover, the structural and functional collapse of the Golgi apparatus induced by brefeldin A inhibits cis-unsaturated fatty acid-triggered autophagy. It is tempting to speculate that the well-established health-promoting effects of cis-unsaturated fatty acids are linked to their unusual capacity to stimulate noncanonical, BECN1-independent autophagic responses.

Niso Santano, M., Bravo San Pedro, J., Maiuri, M., Tavernarakis, N., Cecconi, F., Madeo, F., et al. (2015). Novel inducers of BECN1-independent autophagy: cis-unsaturated fatty acids. AUTOPHAGY, 11(3), 575-7-577 [10.1080/15548627.2015.1017222].

Novel inducers of BECN1-independent autophagy: cis-unsaturated fatty acids

CECCONI, FRANCESCO;
2015-01-01

Abstract

The induction of autophagy usually requires the activation of PIK3C3/VPS34 (phosphatidylinositol 3-kinase, catalytic subunit type 3) within a multiprotein complex that contains BECN1 (Beclin 1, autophagy related). PIK3C3 catalyzes the conversion of phosphatidylinositol into phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns3P associates with growing phagophores, which recruit components of the autophagic machinery, including the lipidated form of MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 β). Depletion of BECN1, PIK3C3 or some of their interactors suppresses the formation of MAP1LC3B(+) phagophores or autophagosomes elicited by most physiological stimuli, including saturated fatty acids. We observed that cis-unsaturated fatty acids stimulate the generation of cytosolic puncta containing lipidated MAP1LC3B as well as the autophagic turnover of long-lived proteins in the absence of PtdIns3P accumulation. In line with this notion, cis-unsaturated fatty acids require neither BECN1 nor PIK3C3 to stimulate the autophagic flux. Such a BECN1-independent autophagic response is phylogenetically conserved, manifesting in yeast, nematodes, mice and human cells. Importantly, MAP1LC3B(+) puncta elicited by cis-unsaturated fatty acids colocalize with Golgi apparatus markers. Moreover, the structural and functional collapse of the Golgi apparatus induced by brefeldin A inhibits cis-unsaturated fatty acid-triggered autophagy. It is tempting to speculate that the well-established health-promoting effects of cis-unsaturated fatty acids are linked to their unusual capacity to stimulate noncanonical, BECN1-independent autophagic responses.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/06 - ANATOMIA COMPARATA E CITOLOGIA
English
Caenorhabditis elegans; Saccharomyces cerevisiae; noncanonical autophagy; oleate; palmitate; stearate
Niso Santano, M., Bravo San Pedro, J., Maiuri, M., Tavernarakis, N., Cecconi, F., Madeo, F., et al. (2015). Novel inducers of BECN1-independent autophagy: cis-unsaturated fatty acids. AUTOPHAGY, 11(3), 575-7-577 [10.1080/15548627.2015.1017222].
Niso Santano, M; Bravo San Pedro, J; Maiuri, M; Tavernarakis, N; Cecconi, F; Madeo, F; Codogno, P; Galluzzi, L; Kroemer, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/120520
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact