We prove a boundary version of the open mapping theorem for holomorphic maps between strongly pseudoconvex domains. That is, we prove that the local image of a holomorphic map $f:D\to D'$ close to a boundary regular contact point p\in \partial D where the Jacobian is bounded away from zero along normal non-tangential directions has to eventually contain every cone (and more generally every region which is Kobayashi asymptotic to a cone) with vertex at f(p).

Bracci, F., Fornaess, J. (2014). The range of holomorphic maps at boundary points. MATHEMATISCHE ANNALEN, 359(3-4), 909-927 [10.1007/s00208-014-1028-4].

The range of holomorphic maps at boundary points

BRACCI, FILIPPO;
2014-01-01

Abstract

We prove a boundary version of the open mapping theorem for holomorphic maps between strongly pseudoconvex domains. That is, we prove that the local image of a holomorphic map $f:D\to D'$ close to a boundary regular contact point p\in \partial D where the Jacobian is bounded away from zero along normal non-tangential directions has to eventually contain every cone (and more generally every region which is Kobayashi asymptotic to a cone) with vertex at f(p).
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - Geometria
English
Con Impact Factor ISI
ERC "HEVO"
Bracci, F., Fornaess, J. (2014). The range of holomorphic maps at boundary points. MATHEMATISCHE ANNALEN, 359(3-4), 909-927 [10.1007/s00208-014-1028-4].
Bracci, F; Fornaess, J
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
reprint.pdf

accesso solo dalla rete interna

Licenza: Copyright dell'editore
Dimensione 273.21 kB
Formato Adobe PDF
273.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/120235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact