Atomic layer deposition (ALD) is used to deposit Pt nanoparticles at low temperature (25–150 °C) to fabricate highly transparent counter electrodes (CEs) for flexible dye-sensitized solar cells (DSCs). The Pt nanoparticles (NPs) are deposited for different number of ALD cycles on indium tin oxide (ITO)/polyethylene naphthalate (PEN) substrates. Rutherford backscattering spectroscopy (RBS) and transmission electron microscopy (TEM) are used to assess the Pt NP loading, density, and size. There is a trade-off between transparency and catalytic activity of the CE, and the best cell performances of back-side-illuminated DSCs (≈3.7% efficiency) are achieved for Pt ALD at temperatures in the range of 100–150 °C, even though deposition at 25 °C is also viable. The best cell produced with ALD platinized CE (100 cycles at 100 °C) outperforms the reference cells fabricated with electrodeposited and sputtered Pt CEs, with relative improvements in efficiency of 19% and 29%, respectively. In addition, these parameters are used to fabricate a large area CE for a sub-module (active area of 17.6 cm2), resulting in an efficiency of 3.1%, which demonstrates the scalability of the process.
Garcia Alonso, D., Zardetto, V., Mackus, A., DE ROSSI, F., Verheijen, M., Brown, T.m., et al. (2014). Atomic layer deposition of highly transparent platinum counter electrodes for metal/polymer flexible dye-sensitized solar cells. ADVANCED ENERGY MATERIALS, 4(4), n/a-n/a [10.1002/aenm.201300831].
Atomic layer deposition of highly transparent platinum counter electrodes for metal/polymer flexible dye-sensitized solar cells
ZARDETTO, VALERIO;DE ROSSI, FRANCESCA;BROWN, THOMAS MEREDITH;
2014-01-01
Abstract
Atomic layer deposition (ALD) is used to deposit Pt nanoparticles at low temperature (25–150 °C) to fabricate highly transparent counter electrodes (CEs) for flexible dye-sensitized solar cells (DSCs). The Pt nanoparticles (NPs) are deposited for different number of ALD cycles on indium tin oxide (ITO)/polyethylene naphthalate (PEN) substrates. Rutherford backscattering spectroscopy (RBS) and transmission electron microscopy (TEM) are used to assess the Pt NP loading, density, and size. There is a trade-off between transparency and catalytic activity of the CE, and the best cell performances of back-side-illuminated DSCs (≈3.7% efficiency) are achieved for Pt ALD at temperatures in the range of 100–150 °C, even though deposition at 25 °C is also viable. The best cell produced with ALD platinized CE (100 cycles at 100 °C) outperforms the reference cells fabricated with electrodeposited and sputtered Pt CEs, with relative improvements in efficiency of 19% and 29%, respectively. In addition, these parameters are used to fabricate a large area CE for a sub-module (active area of 17.6 cm2), resulting in an efficiency of 3.1%, which demonstrates the scalability of the process.File | Dimensione | Formato | |
---|---|---|---|
Atomic Layer Deposition of Highly Transparent Platinum Garcia Alonso AEM14.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
911.64 kB
Formato
Adobe PDF
|
911.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.