Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as 'ribosomopathies' that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting. The future is to design highly specific drugs targeting the translational apparatus.

Loreni, F., Mancino, M., Biffo, S. (2014). Translation factors and ribosomal proteins control tumor onset and progression: how?. ONCOGENE, 33(17), 2145-2156 [10.1038/onc.2013.153].

Translation factors and ribosomal proteins control tumor onset and progression: how?

LORENI, FABRIZIO;
2014-04-24

Abstract

Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as 'ribosomopathies' that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting. The future is to design highly specific drugs targeting the translational apparatus.
24-apr-2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/11 - BIOLOGIA MOLECOLARE
English
Con Impact Factor ISI
Gene Expression Regulation, Neoplastic; Protein Biosynthesis; Animals; Neoplasms; Eukaryotic Initiation Factors; Humans; Carcinogenesis; Disease Progression; Ribosomes
Loreni, F., Mancino, M., Biffo, S. (2014). Translation factors and ribosomal proteins control tumor onset and progression: how?. ONCOGENE, 33(17), 2145-2156 [10.1038/onc.2013.153].
Loreni, F; Mancino, M; Biffo, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
13Loreni.pdf

accesso aperto

Licenza: Creative commons
Dimensione 721.92 kB
Formato Adobe PDF
721.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/119271
Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 65
social impact