The performance of delay/disruption tolerant networking (DTN) protocols in cislunar and deep-space communication systems has previously been studied by simulation. However, little work has been seen in characterizing in an analytical manner the performance of DTN protocols for space with respect to asymmetric channel rates. We present a performance characterization of the recently developed DTN Licklider transmission protocol (LTP) convergence layer adapter (CLA) (or simply LTPCL) over cislunar space channels with data-rate asymmetry. Analytical models are built to characterize LTPCL with respect to the minimum number of bundle protocol (BP) bundles that should be aggregated to avoid delay in acknowledgment (ACK) transmission and the optimal number of bundles to be aggregated for the best transmission efficiency of BP/LTPCL, with the effect of full overhead at all layers taken into consideration. The models are validated by file transfer experiments running BP/LTPCL protocols using a PC-based testbed.
Yang, Z., Wang, R., Yu, Q., Sun, X., DE SANCTIS, M., Zhang, Q., et al. (2014). Analytical characterization of Licklider Transmission Protocol (LTP) in cislunar communications. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 50(3), 2019-2031 [10.1109/TAES.2013.120746].
Analytical characterization of Licklider Transmission Protocol (LTP) in cislunar communications
DE SANCTIS, MAURO;
2014-07-01
Abstract
The performance of delay/disruption tolerant networking (DTN) protocols in cislunar and deep-space communication systems has previously been studied by simulation. However, little work has been seen in characterizing in an analytical manner the performance of DTN protocols for space with respect to asymmetric channel rates. We present a performance characterization of the recently developed DTN Licklider transmission protocol (LTP) convergence layer adapter (CLA) (or simply LTPCL) over cislunar space channels with data-rate asymmetry. Analytical models are built to characterize LTPCL with respect to the minimum number of bundle protocol (BP) bundles that should be aggregated to avoid delay in acknowledgment (ACK) transmission and the optimal number of bundles to be aggregated for the best transmission efficiency of BP/LTPCL, with the effect of full overhead at all layers taken into consideration. The models are validated by file transfer experiments running BP/LTPCL protocols using a PC-based testbed.File | Dimensione | Formato | |
---|---|---|---|
paper.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.