We discuss several symplectic aspects related to the MaA (c) critical value c (u) of the universal cover of a Tonelli Hamiltonian. In particular we show that the critical energy level is never of virtual contact type for manifolds of dimension greater than or equal to three. We also show the symplectic invariance of the finiteness of the Peierls barrier and the Aubry set of the universal cover. We also provide an example where c (u) coincides with the infimum of Mather's alpha function but the Aubry set of the universal cover is empty and the Peierls barrier is finite. A second example exhibits all the ergodic invariant minimizing measures with zero homotopy, showing, quite surprinsingly, that the union of their supports is not a graph, in contrast with Mather's celebrated graph theorem.

Paternain, G., Sorrentino, A. (2014). Symplectic and contact properties of the Mañé critical value of the universal cover. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 21(5), 679-708 [10.1007/s00030-013-0262-x].

Symplectic and contact properties of the Mañé critical value of the universal cover

SORRENTINO, ALFONSO
2014-01-01

Abstract

We discuss several symplectic aspects related to the MaA (c) critical value c (u) of the universal cover of a Tonelli Hamiltonian. In particular we show that the critical energy level is never of virtual contact type for manifolds of dimension greater than or equal to three. We also show the symplectic invariance of the finiteness of the Peierls barrier and the Aubry set of the universal cover. We also provide an example where c (u) coincides with the infimum of Mather's alpha function but the Aubry set of the universal cover is empty and the Peierls barrier is finite. A second example exhibits all the ergodic invariant minimizing measures with zero homotopy, showing, quite surprinsingly, that the union of their supports is not a graph, in contrast with Mather's celebrated graph theorem.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
Settore MAT/03 - GEOMETRIA
English
http://www.springer.com/birkhauser/mathematics/journal/30
Paternain, G., Sorrentino, A. (2014). Symplectic and contact properties of the Mañé critical value of the universal cover. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 21(5), 679-708 [10.1007/s00030-013-0262-x].
Paternain, G; Sorrentino, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
NoDEA.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 408.9 kB
Formato Adobe PDF
408.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/117330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact