This paper studies the existence of invariant smooth Lagrangian graphs for Tonelli Hamiltonian systems with symmetries. In particular, we consider Tonelli Hamiltonians with n independent but not necessarily involutive constants of motion and obtain two theorems reminiscent of the Liouville-Arnol′d theorem. Moreover, we also obtain results on the structure of the configuration spaces of such systems that are reminiscent of results on the configuration space of completely integrable Tonelli Hamiltonians. © 2012 Springer-Verlag.

Butler, L.t., Sorrentino, A. (2012). Weak Liouville-Arnol′d Theorems and Their Implications. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 315(1), 109-133 [10.1007/s00220-012-1536-6].

Weak Liouville-Arnol′d Theorems and Their Implications

SORRENTINO, ALFONSO
2012-01-01

Abstract

This paper studies the existence of invariant smooth Lagrangian graphs for Tonelli Hamiltonian systems with symmetries. In particular, we consider Tonelli Hamiltonians with n independent but not necessarily involutive constants of motion and obtain two theorems reminiscent of the Liouville-Arnol′d theorem. Moreover, we also obtain results on the structure of the configuration spaces of such systems that are reminiscent of results on the configuration space of completely integrable Tonelli Hamiltonians. © 2012 Springer-Verlag.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Statistical and Nonlinear Physics; Mathematical Physics
Butler, L.t., Sorrentino, A. (2012). Weak Liouville-Arnol′d Theorems and Their Implications. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 315(1), 109-133 [10.1007/s00220-012-1536-6].
Butler, Lt; Sorrentino, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Butler-Sorrentino2012.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 386.2 kB
Formato Adobe PDF
386.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/117324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact