Using the notion of displacement rank, we look for a unifying approach to representations of a matrix A as sums of products of matrices belonging to commutative matrix algebras. These representations are then considered in case A is the inverse of a Toeplitz or a Toeplitz plus Hankel matrix. Some well-known decomposition formulas for A (Gohberg-Semencul or Kailath et al., Gader, Bini-Pan, and Gohberg-Olshevsky) turn out to be special cases of the above representations. New formulas for A in terms of algebras of symmetric matrices are studied, and their computational aspects are discussed.

DI FIORE, C., Zellini, P. (1995). Matrix decompositions using displacement rank and classes of commutative matrix algebras. LINEAR ALGEBRA AND ITS APPLICATIONS, 229, 49-99 [10.1016/0024-3795(93)00347-3].

Matrix decompositions using displacement rank and classes of commutative matrix algebras

DI FIORE, CARMINE;ZELLINI, PAOLO
1995-01-01

Abstract

Using the notion of displacement rank, we look for a unifying approach to representations of a matrix A as sums of products of matrices belonging to commutative matrix algebras. These representations are then considered in case A is the inverse of a Toeplitz or a Toeplitz plus Hankel matrix. Some well-known decomposition formulas for A (Gohberg-Semencul or Kailath et al., Gader, Bini-Pan, and Gohberg-Olshevsky) turn out to be special cases of the above representations. New formulas for A in terms of algebras of symmetric matrices are studied, and their computational aspects are discussed.
1995
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
http://www.mat.uniroma2.it/~tvmsscho/papers/Zellini2.pdf
DI FIORE, C., Zellini, P. (1995). Matrix decompositions using displacement rank and classes of commutative matrix algebras. LINEAR ALGEBRA AND ITS APPLICATIONS, 229, 49-99 [10.1016/0024-3795(93)00347-3].
DI FIORE, C; Zellini, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/11730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact