Let XX be a space, intended as a possibly curved space–time, and AA a precosheaf of C∗C∗-algebras on XX. Motivated by algebraic quantum field theory, we study the Kasparov and ΘΘ-summable KK-homology of AA interpreting them in terms of the holonomy equivariant KK-homology of the associated C∗C∗-dynamical system. This yields a characteristic class for KK-homology cycles of AA with values in the odd cohomology of XX, that we interpret as a generalized statistical dimension.

Ruzzi, G., Vasselli, E. (2014). The K-homology of nets of C*-algebras. JOURNAL OF GEOMETRY AND PHYSICS, 86, 476-491 [10.1016/j.geomphys.2014.10.003].

The K-homology of nets of C*-algebras

RUZZI, GIUSEPPE;
2014-01-01

Abstract

Let XX be a space, intended as a possibly curved space–time, and AA a precosheaf of C∗C∗-algebras on XX. Motivated by algebraic quantum field theory, we study the Kasparov and ΘΘ-summable KK-homology of AA interpreting them in terms of the holonomy equivariant KK-homology of the associated C∗C∗-dynamical system. This yields a characteristic class for KK-homology cycles of AA with values in the odd cohomology of XX, that we interpret as a generalized statistical dimension.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Algebraic quantum field theory; K-homology; Cheeger–Simons classes
http://www.sciencedirect.com/science/article/pii/S0393044014002186
Ruzzi, G., Vasselli, E. (2014). The K-homology of nets of C*-algebras. JOURNAL OF GEOMETRY AND PHYSICS, 86, 476-491 [10.1016/j.geomphys.2014.10.003].
Ruzzi, G; Vasselli, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
netCX2-JGP.pdf

solo utenti autorizzati

Descrizione: articolo principale
Licenza: Copyright dell'editore
Dimensione 502.34 kB
Formato Adobe PDF
502.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/117072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact