We interpret the close link between the critical points of Mather's barrier functions and minimal homoclinic orbits with respect to the Aubry sets on $\mathbbT^n$. We also prove a critical point theorem for barrier functions, and the existence of such homoclinic orbits on $\mathbbT^2$ as an application.

Cannarsa, P., Cheng, W. (2015). Homoclinic orbits and critical points of barrier functions. NONLINEARITY, 28(6), 1823-1840 [10.1088/0951-7715/28/6/1823].

Homoclinic orbits and critical points of barrier functions

CANNARSA, PIERMARCO;
2015-01-01

Abstract

We interpret the close link between the critical points of Mather's barrier functions and minimal homoclinic orbits with respect to the Aubry sets on $\mathbbT^n$. We also prove a critical point theorem for barrier functions, and the existence of such homoclinic orbits on $\mathbbT^2$ as an application.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Inglese
Mathematics - Analysis of PDEs; Mathematics - Analysis of PDEs; 26B25, 35A21, 49L25, 37J50, 70H20
http://arxiv.org/abs/1409.8520v1
Cannarsa, P., Cheng, W. (2015). Homoclinic orbits and critical points of barrier functions. NONLINEARITY, 28(6), 1823-1840 [10.1088/0951-7715/28/6/1823].
Cannarsa, P; Cheng, W
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMC-Chn_NL copia.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 273.28 kB
Formato Adobe PDF
273.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/116565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact