Even though a few architectures exist to support the difficult ontology matching task, it happens often they are not reconfigurable (or just a little) related to both ontology features and applications needs. We introduce GENOMA, an architecture supporting development of Ontolo-gy Matching (OM) tools with the aims to reuse, possibly, existing modules each of them dealing with a specific task/subtasks of the OM process. In GENOMA flexibility and extendibility are considered mandatory features along with the ability to parallelize and distribute the processing load on dif-ferent systems. Thanks to a dedicated graphical user interface, GENOMA can be used by expert users, as well as novice, that can validate the resulting architecture. We highlight as main features of developed architecture: • to select, combine and set different parameters • to evaluate the matching tool applied to big size ontologies • efficiency of the OM tool • automatic balancing of the processing load on different systems
Enea, R., Pazienza, M.T., & Turbati, A. (2015). GENOMA: GENeric Ontology Matching Architecture. In AI*IA 2015, Advances in Artificial Intelligence (pp. 303-315). Springer-Verlag [10.1007/978-3-319-24309-2_23].
Autori: | ||
Autori: | Enea, R; Pazienza, MT; Turbati, A | |
Titolo: | GENOMA: GENeric Ontology Matching Architecture | |
Data di pubblicazione: | 2015 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-3-319-24309-2_23 | |
Settore Scientifico Disciplinare: | Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni | |
Lingua: | English | |
Rilevanza: | Rilevanza internazionale | |
Tipo: | Capitolo o saggio | |
Altre informazioni significative: | SemaGrow is partially funded by the Seventh Framework Programme (FP7) of the European Commision (FP7-ICT-2011.4.4a Intelligent Information Management) under Grant Agreement No. 318497 | |
Tipologia: | Contributo in libro | |
Citazione: | Enea, R., Pazienza, M.T., & Turbati, A. (2015). GENOMA: GENeric Ontology Matching Architecture. In AI*IA 2015, Advances in Artificial Intelligence (pp. 303-315). Springer-Verlag [10.1007/978-3-319-24309-2_23]. | |
Appare nelle tipologie: | 03 - Contributo in libro |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
AIxIA_GENOMA GENeric Ontology Matching Architecture.pdf | Articolo principale | N/A | Copyright dell'editore | UNIVERSITY_NETWORK Richiedi una copia |