We report on microwave emission from linear parallel arrays of underdamped Josephson junctions, which are described by the Frenkel-Kontorova (FK) model. Electromagnetic radiation is detected from the arrays when biased on current singularities (steps) appearing at voltages Vn ¼ Φ0ðn¯c=LÞ, where Φ0 ¼ 2.07 × 10−15 Wb is the magnetic flux quantum, and ¯c, L, and n are, respectively, the speed of light in the transmission line embedding the array, L its physical length, and n an integer. The radiation, detected at fundamental frequency ¯c=2L when biased on different singularities, indicates shuttling of bunched 2π kinks (magnetic flux quanta). Resonance of flux-quanta motion with the small-amplitude oscillations induced in the arrays gives rise to fine structures in the radiation spectrum, which are interpreted on the basis of the FK model describing the resonance. The impact of our results on design and performances of new digital circuit families is discussed.
Lucci, M., Badoni, D., Merlo, V., Ottaviani, I., Salina, G., Cirillo, M., et al. (2015). Experimental Study of Spectral Properties of a Frenkel-Kontorova System. PHYSICAL REVIEW LETTERS, 115(10) [10.1103/PhysRevLett.115.107002].
Experimental Study of Spectral Properties of a Frenkel-Kontorova System
LUCCI, MASSIMILIANO;MERLO, VITTORIO;OTTAVIANI, IVANO;CIRILLO, MATTEO;
2015-09-04
Abstract
We report on microwave emission from linear parallel arrays of underdamped Josephson junctions, which are described by the Frenkel-Kontorova (FK) model. Electromagnetic radiation is detected from the arrays when biased on current singularities (steps) appearing at voltages Vn ¼ Φ0ðn¯c=LÞ, where Φ0 ¼ 2.07 × 10−15 Wb is the magnetic flux quantum, and ¯c, L, and n are, respectively, the speed of light in the transmission line embedding the array, L its physical length, and n an integer. The radiation, detected at fundamental frequency ¯c=2L when biased on different singularities, indicates shuttling of bunched 2π kinks (magnetic flux quanta). Resonance of flux-quanta motion with the small-amplitude oscillations induced in the arrays gives rise to fine structures in the radiation spectrum, which are interpreted on the basis of the FK model describing the resonance. The impact of our results on design and performances of new digital circuit families is discussed.File | Dimensione | Formato | |
---|---|---|---|
PRLFK2015.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
358.69 kB
Formato
Adobe PDF
|
358.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.