We state large deviations for small time of a pinned n-conditional Gaussian process, i.e. the bridge of a Gaussian process conditioned to stay in n fixed points at n fixed past instants, by letting all the past monitoring instants to depend on the small parameter going to 0. Differently from what already developed in Caramellino and Pacchiarotti (Adv Appl Probab 40:424–453, 2008), this procedure is able to catch the dependence on the past observations. We apply the results to numerical experiments that involve the fractional Brownian motion, for the computation of the hitting probability through Monte Carlo methods.

Caramellino, L., Pacchiarotti, B., Salvadei, S. (2015). Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 17(2), 383-401 [10.1007/s11009-013-9364-5].

Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes

CARAMELLINO, LUCIA;PACCHIAROTTI, BARBARA;SALVADEI, SIMONE
2015-01-01

Abstract

We state large deviations for small time of a pinned n-conditional Gaussian process, i.e. the bridge of a Gaussian process conditioned to stay in n fixed points at n fixed past instants, by letting all the past monitoring instants to depend on the small parameter going to 0. Differently from what already developed in Caramellino and Pacchiarotti (Adv Appl Probab 40:424–453, 2008), this procedure is able to catch the dependence on the past observations. We apply the results to numerical experiments that involve the fractional Brownian motion, for the computation of the hitting probability through Monte Carlo methods.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Caramellino, L., Pacchiarotti, B., Salvadei, S. (2015). Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 17(2), 383-401 [10.1007/s11009-013-9364-5].
Caramellino, L; Pacchiarotti, B; Salvadei, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2015-CPacchiarottiSalvadei-MCAP.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 418.5 kB
Formato Adobe PDF
418.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/114074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact