The increasing development of technology in various sectors has led to the introduction of microsystems in new fields, for use in harsh operating conditions, where traditional technologies based on silicon show definitely inadequate. In particular, the applications of “in core” and “out of core” neutron diagnostics in modern fission and fusion nuclear reactors need qualities of radiation hardness, stability and response reproducibility hardly obtainable with currently available conventional sensors. For this reason worldwide research is directed toward diamond, which is, due to its excellent physical-chemical end electric properties, the most suitable material to the realization of detectors operating with high performance even in critical operating conditions (in presence of high fluxes of particle and photon radiation, high temperature, mechanical and thermal stress, corrosion, etc.). This thesis is dedicated to the realization and study of micro-detectors of thermal and fast neutrons based on single crystal CVD diamond (SCD), from the synthesis of the material and the basic characterization of the produced detectors at the laboratories of the Department of Mechanical Engineering of the University of Rome “Tor Vergata” and the Frascati neutron Generator (FNG), to their installation and test in large experimental facilities, such as the fission and fusion reactors TRIGA and JET, respectively. The physical properties of the synthesized single crystal diamond films, both intrinsic and boron doped, have been thoroughly investigated by means of diffractometric, spectroscopic, morphological and electrical characterization techniques. Defects in the intrinsic diamond and, in particular, its shallow traps have been studied by analyzing the charge carriers trapping-detrapping phenomena under UV irradiation, in the framework of a theoretical model developed for the interpretation of the experimental data, thus identifying their activation energy. The combination of boron doped (SCD-p) and intrinsic (SCD-i) single crystal diamond films, together with the possibility to easily build Schottky junctions on intrinsic diamond by thermal evaporation of aluminium contacts, made it possible, by using simple multilayer M/SCD-i/SCD-p structures, to obtain high quality and highly reproducible devices which can be effectively used both for electronics (rectifying Schottky diodes) and for detection of photons (UV, VUV, X- and gamma- rays), charged particles, neutrons. The characterization of these devices, besides their mere realization, has been an integral part of this thesis and has been carried out thoroughly in order to investigate both electrical and spectroscopic properties of produced detectors. The spectroscopic characterization has been carried out by irradiation with 5.5 MeV alpha particles emitted by a 241Am source and has provided an essential tool to investigate detectors reproducibility, stability, charge collection efficiency and energy resolution also, and above all, for detection of particles of higher energy and of neutrons. Radiation detection applications in the diagnostic of thermal and fast neutrons have confirmed the excellent worldwide quality of the devices. Besides the excellent results obtained during preliminary characterization at the Frascati neutron Generator (FNG) and during the test at nuclear fission reactor TRIGA, this level of excellence has been demonstrated in the international field by the installation of some detectors at JET, whose performances are fully comparable, or superior, to those of the official diagnostic.
Lo sviluppo della tecnologia nei più diversi settori applicativi ha portato all’introduzione dei microsistemi in nuovi campi d’impiego, caratterizzati da condizioni di funzionamento ostili, nei quali le tecnologie tradizionali basate sul silicio si mostrano decisamente inadeguate. In particolare, per le applicazioni di diagnostica neutronica “in core” e “out of core” nei moderni reattori a fissione e a fusione nucleare sono necessarie qualità di resistenza alla radiazione, stabilità e riproducibilità della risposta difficilmente ottenibili con i sensori convenzionali disponibili attualmente in commercio ed è per questo che la ricerca, a livello mondiale, si è indirizzata verso il diamante, il materiale più adatto, grazie alle sue eccellenti proprietà chimico-fisiche ed elettroniche, alla realizzazione di rivelatori operanti con alte prestazioni anche in condizioni operative critiche (in presenza di alti flussi di radiazione particellare e fotonica, alte temperature, stress meccanici e termici, agenti corrosivi, etc.). Questo lavoro di tesi è dedicato alla realizzazione e allo studio di microrivelatori di neutroni termici e veloci in diamante monocristallino CVD a partire dalla sintesi del materiale e dalla caratterizzazione di base dei dispositivi prodotti, presso i laboratori del Dipartimento di Ingegneria Meccanica dell’Università degli studi di Roma “Tor Vergata” e il generatore di neutroni FNG, fino all’installazione e al test dei detectors in grandi facilities sperimentali, quali i reattori a fissione e fusione nucleare TRIGE e JET, rispettivamente. Le proprietà fisiche dei film sintetizzati di diamante a singolo cristallo (SCD), sia intrinseci che drogati con boro, sono state approfonditamente indagate attraverso tecniche di caratterizzazione diffrattometriche, spettroscopiche, morfologiche ed elettriche. I difetti presenti nel diamante intrinseco e, in particolare, le trappole poco profonde (“shallow traps”) sono stati studiati analizzando i fenomeni di trapping-detrapping dei portatori di carica sotto irraggiamento UV, nel quadro di un modello teorico sviluppato per l’interpretazione dei dati sperimentali, individuandone così l’energia di attivazione. La combinazione di film di diamante monocristallino drogati con boro (SCD-p) e intrinseci (SCD-i), unitamente alla possibilità di realizzare giunzioni Schottky sul diamante intrinseco con banali contatti circolari di Al, ha consentito, ricorrendo a semplici strutture multilayer M/SCD-i/SCD-p, di ottenere con altissimi livelli di riproducibilità dispositivi di eccellente qualità utilizzabili efficacemente sia in ambito puramente elettrico (come diodi Schottky rettificanti) che rivelatoristico, come detectors di fotoni (UV, VUV, raggi X, gamma), particelle cariche e neutroni. La caratterizzazione di tali dispositivi, accanto alla loro realizzazione seriale, ha costituito parte integrante di questo lavoro di tesi ed è stata condotta approfonditamente al fine di indagare le proprietà sia elettriche che spettroscopiche dei rivelatori prodotti. La caratterizzazione spettroscopica è stata svolta attraverso irraggiamento con particelle α da 5.5 MeV prodotte da una sorgente 241Am e si è rivelata uno strumento fondamentale per analizzare la riproducibilità, la stabilità, l’efficienza e il potere risolutivo dei rivelatori anche, e soprattutto, per la rivelazione di particelle di più alta energia e, in particolare, di neutroni termici e veloci. Le applicazioni rivelatoristiche nell’ambito della diagnostica di neutroni termici e veloci hanno confermato l’eccellente qualità a livello mondiale dei dispositivi realizzati. Accanto agli ottimi risultati ottenuti in fase di caratterizzazione preliminare presso il generatore di neutroni FNG e in sede di test presso il reattore a fissione nucleare TRIGA, questo livello di eccellenza è stato dimostrato in campo internazionale dall’installazione di alcuni detectors presso il JET, con prestazioni del tutto comparabili, se non superiori, a quelle della diagnostica ufficiale.
Prestopino, G. (2009). Microrivelatori di neutroni in diamante monocristallino CVD.
Microrivelatori di neutroni in diamante monocristallino CVD
PRESTOPINO, GIUSEPPE
2009-09-04
Abstract
The increasing development of technology in various sectors has led to the introduction of microsystems in new fields, for use in harsh operating conditions, where traditional technologies based on silicon show definitely inadequate. In particular, the applications of “in core” and “out of core” neutron diagnostics in modern fission and fusion nuclear reactors need qualities of radiation hardness, stability and response reproducibility hardly obtainable with currently available conventional sensors. For this reason worldwide research is directed toward diamond, which is, due to its excellent physical-chemical end electric properties, the most suitable material to the realization of detectors operating with high performance even in critical operating conditions (in presence of high fluxes of particle and photon radiation, high temperature, mechanical and thermal stress, corrosion, etc.). This thesis is dedicated to the realization and study of micro-detectors of thermal and fast neutrons based on single crystal CVD diamond (SCD), from the synthesis of the material and the basic characterization of the produced detectors at the laboratories of the Department of Mechanical Engineering of the University of Rome “Tor Vergata” and the Frascati neutron Generator (FNG), to their installation and test in large experimental facilities, such as the fission and fusion reactors TRIGA and JET, respectively. The physical properties of the synthesized single crystal diamond films, both intrinsic and boron doped, have been thoroughly investigated by means of diffractometric, spectroscopic, morphological and electrical characterization techniques. Defects in the intrinsic diamond and, in particular, its shallow traps have been studied by analyzing the charge carriers trapping-detrapping phenomena under UV irradiation, in the framework of a theoretical model developed for the interpretation of the experimental data, thus identifying their activation energy. The combination of boron doped (SCD-p) and intrinsic (SCD-i) single crystal diamond films, together with the possibility to easily build Schottky junctions on intrinsic diamond by thermal evaporation of aluminium contacts, made it possible, by using simple multilayer M/SCD-i/SCD-p structures, to obtain high quality and highly reproducible devices which can be effectively used both for electronics (rectifying Schottky diodes) and for detection of photons (UV, VUV, X- and gamma- rays), charged particles, neutrons. The characterization of these devices, besides their mere realization, has been an integral part of this thesis and has been carried out thoroughly in order to investigate both electrical and spectroscopic properties of produced detectors. The spectroscopic characterization has been carried out by irradiation with 5.5 MeV alpha particles emitted by a 241Am source and has provided an essential tool to investigate detectors reproducibility, stability, charge collection efficiency and energy resolution also, and above all, for detection of particles of higher energy and of neutrons. Radiation detection applications in the diagnostic of thermal and fast neutrons have confirmed the excellent worldwide quality of the devices. Besides the excellent results obtained during preliminary characterization at the Frascati neutron Generator (FNG) and during the test at nuclear fission reactor TRIGA, this level of excellence has been demonstrated in the international field by the installation of some detectors at JET, whose performances are fully comparable, or superior, to those of the official diagnostic.File | Dimensione | Formato | |
---|---|---|---|
TESI DOTTORATO.pdf
accesso aperto
Dimensione
4.44 MB
Formato
Adobe PDF
|
4.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.