A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC) is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS) transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPA's). A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.
DI PAOLO, F., Leggieri, A., Passi, D. (2014). High Efficiency Ka-Band Spatial Combiner. ADVANCED ELECTROMAGNETICS, 3(2), 10-15.
High Efficiency Ka-Band Spatial Combiner
DI PAOLO, FRANCO;
2014-01-01
Abstract
A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC) is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS) transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPA's). A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.File | Dimensione | Formato | |
---|---|---|---|
267-837-1-PB.pdf
solo utenti autorizzati
Dimensione
431.94 kB
Formato
Adobe PDF
|
431.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.