In this paper we prove symmetry results for classical solutions of nonlinear cooperative elliptic systems in a ball or in annulus in RN, N ≥ 2. More precisely we prove that solutions having Morse index j ≤ N − 1 are foliated Schwarz symmetric if the nonlinearity has a convex derivative and a full coupling condition is satisfied along the solution.

Damascelli, L., Gladiali, F., Pacella, F. (2013). A symmetry result for semilinear cooperative elliptic systems. In J.B. Serrin, E.L. Mitidieri, V.D. Rădulescu (a cura di), Recent trends in nonlinear partial differential equations 2.: stationary problems (pp. 187-204). AMS [10.1090/conm/595/11802].

A symmetry result for semilinear cooperative elliptic systems

DAMASCELLI, LUCIO;
2013-01-01

Abstract

In this paper we prove symmetry results for classical solutions of nonlinear cooperative elliptic systems in a ball or in annulus in RN, N ≥ 2. More precisely we prove that solutions having Morse index j ≤ N − 1 are foliated Schwarz symmetric if the nonlinearity has a convex derivative and a full coupling condition is satisfied along the solution.
2013
Settore MAT/05 - ANALISI MATEMATICA
English
Rilevanza internazionale
Capitolo o saggio
Cooperative elliptic systems, symmetry, maximum principle, Morse index.
Damascelli, L., Gladiali, F., Pacella, F. (2013). A symmetry result for semilinear cooperative elliptic systems. In J.B. Serrin, E.L. Mitidieri, V.D. Rădulescu (a cura di), Recent trends in nonlinear partial differential equations 2.: stationary problems (pp. 187-204). AMS [10.1090/conm/595/11802].
Damascelli, L; Gladiali, F; Pacella, F
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
DamGlaPac1-2013.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Licenza: Copyright dell'editore
Dimensione 294.38 kB
Formato Adobe PDF
294.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/107408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact