In this study, we develop an electro-thermal model to investigate heating and heat dissipation in nanostructured devices. The heating is computed by a drift-diffusion simulation, which accounts for the dissipative transport of charge carriers. The heat dissipation model is based on the phonon Boltzmann transport equation (PBTE). Application of the electrothermal model to a truncated-pyramid-shaped GaN dot embedded in an AlGaN nanocolumn reveals the existence of mesoscopic effects such as a hotspot across the quantum dot and thermal boundary resistances. We enhance the computational efficiency of the thermal model by implementing a coupled PBTE/Fourier model. This method, based on the domain partitioning, provides the same maximum temperature as that computed by the simple PBTE model, resulting, therefore, a powerful scheme for capture local heating effect with relatively low computational effort. Details about the numerical implementation are also provided.

Romano, G., DI CARLO, A. (2011). Multiscale electrothermal modeling of nanostructured devices. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 10(6), 1285-1292 [10.1109/TNANO.2011.2129574].

Multiscale electrothermal modeling of nanostructured devices

DI CARLO, ALDO
2011-01-01

Abstract

In this study, we develop an electro-thermal model to investigate heating and heat dissipation in nanostructured devices. The heating is computed by a drift-diffusion simulation, which accounts for the dissipative transport of charge carriers. The heat dissipation model is based on the phonon Boltzmann transport equation (PBTE). Application of the electrothermal model to a truncated-pyramid-shaped GaN dot embedded in an AlGaN nanocolumn reveals the existence of mesoscopic effects such as a hotspot across the quantum dot and thermal boundary resistances. We enhance the computational efficiency of the thermal model by implementing a coupled PBTE/Fourier model. This method, based on the domain partitioning, provides the same maximum temperature as that computed by the simple PBTE model, resulting, therefore, a powerful scheme for capture local heating effect with relatively low computational effort. Details about the numerical implementation are also provided.
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - ELETTRONICA
English
Romano, G., DI CARLO, A. (2011). Multiscale electrothermal modeling of nanostructured devices. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 10(6), 1285-1292 [10.1109/TNANO.2011.2129574].
Romano, G; DI CARLO, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/104771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact