In early atherogenesis, subendothelial retention of lipidic droplets is associated with an inflammatory response-to-injury, culminating in the formation of foam cells and plaque. Low density lipoprotein (LDL) is the main constituent of subendothelial lipidic droplets. The process is believed to occur following LDL modification. Searching for a modified LDL in plasma, electronegative LDL (LDL(-)) was identified and found to be associated with major risk biomarkers. The apoprotein in LDL(-) is misfolded, and we show here that this modification primes the aggregation of native LDL, conforming to the typical pattern of protein amylodoigenesis. After a lag phase, whose length depends on LDL(-) concentration, light scattering and atomic force microscopy reveal early exponential growth of intermediate globules, which evolve into fibrils. These globules are remarkably similar to subendothelial droplets in atheromatous lesions and different from those produced by oxidation or biochemical manipulation. During aggregation, ellipticity and tryptophan fluorescence measurements reveal a domino-style spread of apoprotein misfolding from LDL(-) to all of the LDL. Computational analysis of the apoprotein primary sequence predicts an unstable, aggregation-prone domain in the regulatory 2 region. Apoprotein misfolding well represents an LDL modification able to transform this cholesterol carrier into a trigger for a response-to-injury in the artery wall. Although LDL(-) has been produced in vitro through various manipulations, the mechanisms involved in its generation in vivo remain obscure. By using a more physiological model, we demonstrate spontaneous, sustained and noticeable production of LDL(-) during incubation of unprocessed human plasma at 37°C. In addition to a higher fraction of amyloidogenic LDL(-), LDL purified from incubated plasma contains an increased level of lysophospholipids and free fatty acids; analysis of LDL lipids packing reveals their loosening. As a result, during plasma incubation, lipid destabilization and protein misfolding take place, and aggregation-prone particles are generated. All these phenomena can be prevented by inhibiting calcium-dependent secretory phospholipases A2. Our plasma incubation model, without removal of reaction products, effectively shows a lipid-protein interplay in LDL, where lipid destabilization after lipolysis threatens the apoprotein’s structure, which misfolds and becomes aggregation-prone.

Nelle fasi precoci dell’aterogenesi, la ritenzione subendoteliale dei droplets lipidici è associata ad una risposta infiammatoria all’insulto, che culmina con la formazione delle “foam cells” e delle placche. Le lipoproteine a bassa densità (LDL) sono le principali costituenti dei droplets subendoteliali. Si ritiene che l’intero processo avvenga a seguito di modificazioni delle LDL. Nella ricerca di LDL modificate nel plasma, sono state identificate le LDL elettronegative (LDL(-)) ritenute associate ai maggiori marker di rischio. L’apoproteina nelle LDL(-) è misfolded; in questo lavoro mostriamo che questa modificazione avvia il processo di aggregazione delle LDL native, in conformità con il tipico pattern di amilodoigenesi proteica. Dopo una fase di latenza, la cui lunghezza dipende dalla concentrazione di LDL(-), il light scattering e la microscopia a forza atomica rivelano una precoce crescita esponenziale degli intermedi globulari, che evolvono in fibrille. Questi intermedi sono simili ai droplets subendoteliali presenti nelle placche ateromatose e differiscono da quelli prodotti da ossidazione o manipolazione biochimica. Durante l’aggregazione, misure di ellitticità e fluorescenza del triptofano mostrano una diffusione a “domino” del misfolding dalle LDL(-) a tutte le LDL. L’analisi computazionale della sequenza primaria dell’apoproteina predice l’esistenza di un dominio instabile, prono all’aggregazione, nella regione 2. Il misfolding dell’apoproteina ben rappresenta una modificazione in grado di trasformare questo carrier del colesterolo nell’iniziatore della risposta all’insulto nella parete arteriosa. Sebbene le LDL(-) possano essere prodotte in vitro attraverso varie manipolazioni, il meccanismo coinvolto nella loro generazione in vivo rimane oscuro. Usando un modello fisiologico, abbiamo dimostrato una spontanea e considerevole produzione di LDL(-) incubando il plasma non processato a 37°C. Oltre ad una maggiore frazione di LDL(-) amilodoigeniche, le LDL purificate da plasma incubato contengono un maggior livello di lisofosfolipidi e acidi grassi liberi; l’analisi dell’impacchettamento dei lipidi nelle LDL rileva il loro rilassamento. Dai risultati ottenuti, possiamo affermare che durante l’incubazione del plasma avviene una destabilizzazione dei lipidi e un misfolding proteico, accanto alla generazione di particelle prone all’aggregazione. Tutti questi fenomeni possono essere prevenuti inibendo le fosfolipasi A2 secretorie, calcio-dipendenti. Il nostro modello di incubazione del plasma, senza la rimozione dei prodotti di reazione, mostra effettivamente un’azione reciproca lipidi/proteine nelle LDL, dove la destabilizzazione dei lipidi dopo lipolisi minaccia la struttura dell’apoproteina, che modificata diventa prona all’aggregazione.

Lenzi, L. (2009). Possibile coinvolgimento del misfolding della componente proteica delle LDL nell’aterogenesi.

Possibile coinvolgimento del misfolding della componente proteica delle LDL nell’aterogenesi

LENZI, LAURA
2009-08-25

Abstract

Nelle fasi precoci dell’aterogenesi, la ritenzione subendoteliale dei droplets lipidici è associata ad una risposta infiammatoria all’insulto, che culmina con la formazione delle “foam cells” e delle placche. Le lipoproteine a bassa densità (LDL) sono le principali costituenti dei droplets subendoteliali. Si ritiene che l’intero processo avvenga a seguito di modificazioni delle LDL. Nella ricerca di LDL modificate nel plasma, sono state identificate le LDL elettronegative (LDL(-)) ritenute associate ai maggiori marker di rischio. L’apoproteina nelle LDL(-) è misfolded; in questo lavoro mostriamo che questa modificazione avvia il processo di aggregazione delle LDL native, in conformità con il tipico pattern di amilodoigenesi proteica. Dopo una fase di latenza, la cui lunghezza dipende dalla concentrazione di LDL(-), il light scattering e la microscopia a forza atomica rivelano una precoce crescita esponenziale degli intermedi globulari, che evolvono in fibrille. Questi intermedi sono simili ai droplets subendoteliali presenti nelle placche ateromatose e differiscono da quelli prodotti da ossidazione o manipolazione biochimica. Durante l’aggregazione, misure di ellitticità e fluorescenza del triptofano mostrano una diffusione a “domino” del misfolding dalle LDL(-) a tutte le LDL. L’analisi computazionale della sequenza primaria dell’apoproteina predice l’esistenza di un dominio instabile, prono all’aggregazione, nella regione 2. Il misfolding dell’apoproteina ben rappresenta una modificazione in grado di trasformare questo carrier del colesterolo nell’iniziatore della risposta all’insulto nella parete arteriosa. Sebbene le LDL(-) possano essere prodotte in vitro attraverso varie manipolazioni, il meccanismo coinvolto nella loro generazione in vivo rimane oscuro. Usando un modello fisiologico, abbiamo dimostrato una spontanea e considerevole produzione di LDL(-) incubando il plasma non processato a 37°C. Oltre ad una maggiore frazione di LDL(-) amilodoigeniche, le LDL purificate da plasma incubato contengono un maggior livello di lisofosfolipidi e acidi grassi liberi; l’analisi dell’impacchettamento dei lipidi nelle LDL rileva il loro rilassamento. Dai risultati ottenuti, possiamo affermare che durante l’incubazione del plasma avviene una destabilizzazione dei lipidi e un misfolding proteico, accanto alla generazione di particelle prone all’aggregazione. Tutti questi fenomeni possono essere prevenuti inibendo le fosfolipasi A2 secretorie, calcio-dipendenti. Il nostro modello di incubazione del plasma, senza la rimozione dei prodotti di reazione, mostra effettivamente un’azione reciproca lipidi/proteine nelle LDL, dove la destabilizzazione dei lipidi dopo lipolisi minaccia la struttura dell’apoproteina, che modificata diventa prona all’aggregazione.
A.A. 2008/2009
Microbiologia medica e immunologia
21.
In early atherogenesis, subendothelial retention of lipidic droplets is associated with an inflammatory response-to-injury, culminating in the formation of foam cells and plaque. Low density lipoprotein (LDL) is the main constituent of subendothelial lipidic droplets. The process is believed to occur following LDL modification. Searching for a modified LDL in plasma, electronegative LDL (LDL(-)) was identified and found to be associated with major risk biomarkers. The apoprotein in LDL(-) is misfolded, and we show here that this modification primes the aggregation of native LDL, conforming to the typical pattern of protein amylodoigenesis. After a lag phase, whose length depends on LDL(-) concentration, light scattering and atomic force microscopy reveal early exponential growth of intermediate globules, which evolve into fibrils. These globules are remarkably similar to subendothelial droplets in atheromatous lesions and different from those produced by oxidation or biochemical manipulation. During aggregation, ellipticity and tryptophan fluorescence measurements reveal a domino-style spread of apoprotein misfolding from LDL(-) to all of the LDL. Computational analysis of the apoprotein primary sequence predicts an unstable, aggregation-prone domain in the regulatory 2 region. Apoprotein misfolding well represents an LDL modification able to transform this cholesterol carrier into a trigger for a response-to-injury in the artery wall. Although LDL(-) has been produced in vitro through various manipulations, the mechanisms involved in its generation in vivo remain obscure. By using a more physiological model, we demonstrate spontaneous, sustained and noticeable production of LDL(-) during incubation of unprocessed human plasma at 37°C. In addition to a higher fraction of amyloidogenic LDL(-), LDL purified from incubated plasma contains an increased level of lysophospholipids and free fatty acids; analysis of LDL lipids packing reveals their loosening. As a result, during plasma incubation, lipid destabilization and protein misfolding take place, and aggregation-prone particles are generated. All these phenomena can be prevented by inhibiting calcium-dependent secretory phospholipases A2. Our plasma incubation model, without removal of reaction products, effectively shows a lipid-protein interplay in LDL, where lipid destabilization after lipolysis threatens the apoprotein’s structure, which misfolds and becomes aggregation-prone.
LDL elettronegative; misfolding
amiloidosi; fosfolipasi A2 secretorie.; aterogenesi;
Settore BIO/11
Italian
Tesi di dottorato
Lenzi, L. (2009). Possibile coinvolgimento del misfolding della componente proteica delle LDL nell’aterogenesi.
File in questo prodotto:
File Dimensione Formato  
tesilenzi.pdf

accesso aperto

Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/1035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact