Using lower bounds for linear forms in elliptic logarithms we determine the integral points of the modular curve associated to the normalizer of a non-split Cartan group of level 11. As an application we obtain a new solution of the class number one problem for complex quadratic fields.

Schoof, R.j., Tzanakis, N. (2012). Integral points of a modular curve of level 11. ACTA ARITHMETICA, 152, 39-49 [DOI: 10.4064/aa152-1-4].

Integral points of a modular curve of level 11

SCHOOF, RENATUS JOHANNES;
2012-01-01

Abstract

Using lower bounds for linear forms in elliptic logarithms we determine the integral points of the modular curve associated to the normalizer of a non-split Cartan group of level 11. As an application we obtain a new solution of the class number one problem for complex quadratic fields.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
elliptic curves, modular curves, diophantine equations, linear forms in logarithms.
Schoof, R.j., Tzanakis, N. (2012). Integral points of a modular curve of level 11. ACTA ARITHMETICA, 152, 39-49 [DOI: 10.4064/aa152-1-4].
Schoof, Rj; Tzanakis, N
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Rene.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 186.17 kB
Formato Adobe PDF
186.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/102829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact